• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um algoritmo evolucion?rio para o problema din?mico de localiza??o de facilidades com capacidades modulares

Silva, Allyson Fernandes da Costa 30 June 2017 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-11-01T21:47:47Z No. of bitstreams: 1 AllysonFernandesDaCostaSilva_DISSERT.pdf: 1659813 bytes, checksum: 0de7287ef5c2c4ae621833638c04aa5f (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-11-08T00:21:06Z (GMT) No. of bitstreams: 1 AllysonFernandesDaCostaSilva_DISSERT.pdf: 1659813 bytes, checksum: 0de7287ef5c2c4ae621833638c04aa5f (MD5) / Made available in DSpace on 2017-11-08T00:21:06Z (GMT). No. of bitstreams: 1 AllysonFernandesDaCostaSilva_DISSERT.pdf: 1659813 bytes, checksum: 0de7287ef5c2c4ae621833638c04aa5f (MD5) Previous issue date: 2017-06-30 / Problemas de localiza??o buscam determinar as melhores posi??es onde devem ser instaladas facilidades de modo a atender demandas existentes. Pela vasta aplicabilidade da ?rea, diversas caracter?sticas j? foram importadas aos modelos para melhor representar situa??es pr?ticas. Uma delas generaliza os modelos cl?ssicos para situa??es em que decis?es de localiza??o devem ser tomadas periodicamente. Outra, permite que modelos tratem do dimensionamento das capacidades como uma vari?vel do problema. O Problema Din?mico de Localiza??o de Facilidades com Capacidades Modulares unifica estas e outras caracter?sticas presentes em problemas de localiza??o num ?nico e generalizado modelo. Este problema foi recentemente formulado na literatura, onde uma abordagem exata foi introduzida e aplicada a inst?ncias derivadas de um estudo de caso no contexto da explora??o de recursos florestais. Neste trabalho ser? apresentado um m?todo alternativo para resolver o mesmo problema. O m?todo escolhido utiliza a estrutura da metaheur?stica Algoritmo Gen?tico e a hibridiza com uma rotina de Descida em Vizinhan?a Vari?vel com tr?s vizinhan?as de busca adaptadas de vizinhan?as aplicadas a outros problemas de localiza??o. Experimentos atestaram a efetividade da metaheur?stica h?brida desenvolvida em compara??o ? aplica??o dos m?todos puros. Na compara??o com o m?todo exato, a heur?stica se mostrou competente ao chegar a solu??es at? 0,02% de dist?ncia do ?timo na maioria das inst?ncias testadas. / Location problems aim to determine the best positions where facilities should be installed in order to meet existing demands. Due to its wide applicability, several characteristics have already been appended to the models to better represent real situations. One of them generalizes classical models to the case that location decisions should be taken periodically. Another allows models to deal with capacity sizing as a problem variable. The Dynamic Facility Location Problem with Modular Capacities unifies these and other characteristics present in location problems in a single and generalized model. This problem was recently formulated in literature where an exact approach was introduced and applied to instances of a case study in the context of the forestry sector. We present an alternative method to solve the same problem. The method chosen uses a Genetic Algorithm metaheuristic framework and hybridizes it with a Variable Neighborhood Descent routine with three neighborhoods adapted from others applied to location problems. Experiments attested the effectiveness of the hybrid metaheuristic developed in comparison to the use of those methods purely. Compared to the exact approach, the heuristic proved to be competent by finding solutions up to a gap of 0,02% to the global optimum in the majority of the instances tested.

Page generated in 0.0437 seconds