• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An improved least squares voltage phasor estimation technique to minimize the Impact of CCVT transients in protective relaying

Pajuelo, Eli Fortunato 21 September 2006
Power systems are protected by numerical relays that detect and isolate faults that may occur on power systems. The correct operation of the relay is very important to maintain the security of the power system. <p>Numerical relays that use voltage measurements from the power system provided by coupling capacitor voltage transformers (CCVT) have sometimes difficulty in correctly identifying a fault in the protected area. The fundamental frequency voltage phasor resulting from these CCVT measurements may result in a deviation from the true value and therefore may locate this phasor temporarily in the incorrect operating region. This phasor deviation is due to the CCVT behavior and the CCVT introduces spurious decaying and oscillating transient signal components on top of the original voltage received from the power system in response to sudden voltage changes produced during faults. Most of the existing methods for estimating the voltage phasor do not take advantage of the knowledge of the CCVT behavior that can be obtained from its design parameters.<p>A new least squares error method for phasor estimation is presented in this thesis, which improves the accuracy and speed of convergence of the phasors obtained, using the knowledge of the CCVT behavior. The characteristics of the transient signal components introduced by the CCVT, such as frequencies and time constants of decay, are included in the description of the curve to be fitted, which is required in a least squares fitting technique. Parameters such as window size and sampling rate for optimum results are discussed.<p>The method proposed is evaluated using typical power systems, with results that can be compared to the response if an ideal potential transformer (PT) were used instead of a CCVT. The limitations of this method are found in some specific power system scenarios, where the natural frequencies of the power system are close to that of the CCVT, but with longer time constants. The accuracy with which the CCVT parameters are known is also assessed, with results that show little impact compared to the improvements achievable.
2

An improved least squares voltage phasor estimation technique to minimize the Impact of CCVT transients in protective relaying

Pajuelo, Eli Fortunato 21 September 2006 (has links)
Power systems are protected by numerical relays that detect and isolate faults that may occur on power systems. The correct operation of the relay is very important to maintain the security of the power system. <p>Numerical relays that use voltage measurements from the power system provided by coupling capacitor voltage transformers (CCVT) have sometimes difficulty in correctly identifying a fault in the protected area. The fundamental frequency voltage phasor resulting from these CCVT measurements may result in a deviation from the true value and therefore may locate this phasor temporarily in the incorrect operating region. This phasor deviation is due to the CCVT behavior and the CCVT introduces spurious decaying and oscillating transient signal components on top of the original voltage received from the power system in response to sudden voltage changes produced during faults. Most of the existing methods for estimating the voltage phasor do not take advantage of the knowledge of the CCVT behavior that can be obtained from its design parameters.<p>A new least squares error method for phasor estimation is presented in this thesis, which improves the accuracy and speed of convergence of the phasors obtained, using the knowledge of the CCVT behavior. The characteristics of the transient signal components introduced by the CCVT, such as frequencies and time constants of decay, are included in the description of the curve to be fitted, which is required in a least squares fitting technique. Parameters such as window size and sampling rate for optimum results are discussed.<p>The method proposed is evaluated using typical power systems, with results that can be compared to the response if an ideal potential transformer (PT) were used instead of a CCVT. The limitations of this method are found in some specific power system scenarios, where the natural frequencies of the power system are close to that of the CCVT, but with longer time constants. The accuracy with which the CCVT parameters are known is also assessed, with results that show little impact compared to the improvements achievable.
3

Filtros digitais recursivos para redução do impacto da resposta transitória do TPC.

SILVA, Célio Anésio da. 13 December 2017 (has links)
Submitted by Lucienne Costa (lucienneferreira@ufcg.edu.br) on 2017-12-13T16:54:10Z No. of bitstreams: 1 CÉLIO ANÉSIO DA SILVA - TESE (PPGEE) 2014.pdf: 1651226 bytes, checksum: a70dc4864a551f419c02ff41303eaffc (MD5) / Made available in DSpace on 2017-12-13T16:54:11Z (GMT). No. of bitstreams: 1 CÉLIO ANÉSIO DA SILVA - TESE (PPGEE) 2014.pdf: 1651226 bytes, checksum: a70dc4864a551f419c02ff41303eaffc (MD5) Previous issue date: 2014-05-29 / Capes / Um novo método de obtenção de parâmetros de filtros digitais recursivos (FDR) é apresentado para reduzir o impacto da resposta transitória dos Transformadores de Potencial Capacitivos (TPC) sobre o desempenho dos sistemas de medição, proteção e controle. Assumindo uma topologia predefinida, os parâmetros dos filtros são obtidos a partir da resposta em frequência do TPC de interesse. Diferentemente das técnicas reportadas na literatura, o método se aplica com facilidade a TPC de diferentes classes de tensão e independe das características operacionais do sistema. Para tanto, faz-se necessário conhecer a resposta em frequência do TPC em questão, no espectro de frequência de interesse. A validação do método é realizada através de simulações digitais em tempo real via simulador RTDSTM (Real Time Digital Simulator). As análises são baseadas em dados de sistemas elétricos reais e no funcionamento dinâmico dos filtros através da estimação dos fasores das tensões e estudos de localização de falta. A partir dos resultados obtidos, verifica-se que a presença dos FDR reduz significativamente os erros de medição causados pelos TPC quando submetidos a condições transitórias. Portanto, os FDR surgem como uma forma simples e de baixo custo para melhorar o desempenho e a confiabilidade dos sistemas de medição, proteção e controle. / A new method for obtaining recursive digital filter (FDR) parameters is presented in order to reduce the impact of Coupling Capacitor Voltage Transformer (CCVT) transient response on the performance of the measurement, protection and control systems. Assuming a pre-defined topology, the filter parameters are obtained from the CCVT frequency response of interest. Unlike the techniques reported in the literature, the method applies easily to CCVT of different voltage classes and it does not depend on the operating characteristics of the system, therefore, it is necessary to know the frequency response of the CCVT on the frequency spectrum of interest. The method is validated is through digital simulation using the RTDSTM (Real Time Digital Simulator). The analyzes are based on data obtained from electrical systems in service and on the dynamic performance of the filters by estimating the phasors of voltages and fault location studies. It is shown that the presence of FDR significantly reduces measurement errors caused by CCVT when subjected to transient conditions, therefore, the FDR arises as a simple and low cost alternative to improve the performance and reliability of measurement systems, protection and control.

Page generated in 0.0808 seconds