1 |
On Resource Optimization and Robust CQI Reporting for Wireless Communication Systems.Ahmad, Ayaz 09 December 2011 (has links) (PDF)
Adaptive resource allocation in wireless communication systems is crucial in order to support the diverse QoS needs of the services and optimize resource utilization. The design of resource allocation schemes should consider the service type for which it is intended. Moreover, due to feedback delay and channel estimation error, the Channel Quality Indicator (CQI) reported to the transmitter may not be a perfect measure of the channel quality and its use for resource allocation may severely degrade the systems performance. In this thesis, we study resource allocation and CQI reporting for wireless networks while taking the aforementioned factors into consideration. First, we consider resource allocation and adaptive modulation in uplink SC-FDMA systems. This is a combinatorial problem whose optimal solution is exponentially complex. We use canonical duality theory to derive a polynomial complexity resource allocation algorithm that provides a nearly optimal solution to the problem. Then, we focus on resource allocation for video streaming in wireless networks with time-varying interference. To this end, by using risk-sensitive control approach, we develop a cross-layer optimization framework that performs power control at the PHY/MAC layer and rate adaptation at the APPLICATION layer jointly and provides fairness among nodes. Finally, by using stochastic control and game theory, we design a robust best-M CQI reporting scheme for multi-carrier and multi-user systems which takes into account the impact of feedback delay and error in CQI computation. Performing resource allocation on the basis of the proposed CQI reporting can significantly improve the system performance.
|
2 |
Investigation on the Frequency Domain Channel Equalization and Interference Cancellation for Single Carrier SystemsChan, Kuei-Cheng 11 August 2008 (has links)
In the single carrier systems with cyclic-prefix (CP), the use of CP does not only eliminate the inter-block interference (IBI), but also convert linear convolution of the transmitted signal with the channel into circular convolution, which leads to the computation complexity of the frequency domain equalization (FDE) at the receiver is reduced. Unfortunately, the use of CP considerably decreases the bandwidth utilization. In order to increase the bandwidth utilization, the single carrier systems with frequency domain equalization (SC-FDE) is investigated. When FDE is used in a single carrier system without CP, the IBI is induced by the modulated symbols and then the bit-error rate (BER) is increased. To reduce the interference and then improve the system performance, a novel interference cancellation scheme is proposed in this thesis. After FDE, it is shown that interference is induced from the right end of a time domain signal block and most of the interference is located at both ends of an equalized time domain signal block. Based on this observation, the modulated symbols which induce the interference are detected according to the maximum-likelihood (ML) principle and then the interference is regenerated and eliminated. For simplifying the computation complexity, we further propose a successive interference cancellation scheme, which is implemented by using the Viterbi algorithm. The simulation results demonstrate that the proposed scheme improves BER performance significantly in SC-FDE systems. In addition, the proposed architecture has comparable BER performance with the SC-CP systems when the multi-path channel is exponentially decayed.
|
3 |
On Resource Optimization and Robust CQI Reporting for Wireless Communication Systems. / Optimisation de Ressources et Méthodes Robustes de Renvoi de CQI dans les Réseaux Sans FilAhmad, Ayaz 09 December 2011 (has links)
Au cours de cette thèse, nous nous sommes d'abord intéressés à l'optimisation des ressources et à la modulation adaptative dans les systèmes SC-FDMA (Single Carrier Frequency Division Multiple Access). Ce problème d'optimisation est combinatoire à complexité de calcul exponentielle. Afin de pallier à cette difficulté, nous avons utilisé la théorie de la dualité canonique, grâce à laquelle, la complexité du problème d'optimisation devient polynômiale et cela en constitue une amélioration remarquable. L'approche proposée est très proche de la solution optimale. Nous avons ensuite étudié la problématique complexe de l'allocation de ressources pour le "Streaming Vidéo" dans les réseaux sans fil, où il est nécessaire d'assurer une transmission vidéo de haute qualité en présence de canaux et de brouillages variables au cours du temps. Dans ce contexte, nous avons proposé une nouvelle méthode d'allocation de puissance conjointement à l'adaptation du débit vidéo. Pour ce faire, nous avons adopté une approche de la théorie de contrôle, intitulée "Risk-Sensitive Control". Nous avons dédié la troisième partie de la thèse à la conception d'une nouvelle stratégie "best-M" pour le renvoi du CQI (Channel Quality Indicator) pour les systèmes multi-utilisateurs et multi-porteuses. En générale, l'erreur d'estimation du CQI ainsi que son délai de renvoi sont gérés au niveau de la station de base. Notre nouvelle stratégie "best-M" suppose que la gestion de ces problèmes est confiée aux utilisateurs. De ce fait, la performance du système se trouve améliorée sans que son débit de signalisation ne soit augmenté en voix montante. / Adaptive resource allocation in wireless communication systems is crucial in order to support the diverse QoS needs of the services and optimize resource utilization. The design of resource allocation schemes should consider the service type for which it is intended. Moreover, due to feedback delay and channel estimation error, the Channel Quality Indicator (CQI) reported to the transmitter may not be a perfect measure of the channel quality and its use for resource allocation may severely degrade the systems performance. In this thesis, we study resource allocation and CQI reporting for wireless networks while taking the aforementioned factors into consideration. First, we consider resource allocation and adaptive modulation in uplink SC-FDMA systems. This is a combinatorial problem whose optimal solution is exponentially complex. We use canonical duality theory to derive a polynomial complexity resource allocation algorithm that provides a nearly optimal solution to the problem. Then, we focus on resource allocation for video streaming in wireless networks with time-varying interference. To this end, by using risk-sensitive control approach, we develop a cross-layer optimization framework that performs power control at the PHY/MAC layer and rate adaptation at the APPLICATION layer jointly and provides fairness among nodes. Finally, by using stochastic control and game theory, we design a robust best-M CQI reporting scheme for multi-carrier and multi-user systems which takes into account the impact of feedback delay and error in CQI computation. Performing resource allocation on the basis of the proposed CQI reporting can significantly improve the system performance.
|
4 |
Biosurfaktanty a jejich využití pro inkorporaci hydrofobních domén do moderních nosičových systémů / Utilization of biosurfactants for incorporation of hydrophobic domains into modern controlled-release systemsNešpor, Tomáš January 2021 (has links)
This work deals with the current topic of carrier systems. Since the biggest problem is the passage of hydrophobic drugs through the bloodstream, or through universal body barriers (eg blood-brain), it is necessary to chemically modify these carriers in order to be able to administer hydrophobic substances effectively. Based on a literature search, several systems are designed and subsequently studied, in which there is a presumption of possible use for carrier systems and at the same time they have biosurfactants incorporated in them due to their ability to solubilize hydrophobic molecules. The theoretical part of this work will describe the individual biosurfactants, the process of their production, their physicochemical properties, and the possibility of their use in carrier systems. At the same time, the individual carrier systems, the procedure of their preparation, the possibilities of their use are described, and their advantages and disadvantages are also compared. In the practical part, the screening of both individual substances and their mutual interactions, as well as methods used to study the emerging structures is then performed. The study of molecular interactions is primarily performed using the technique of dynamic light scattering. The next part describes the optimization of hydrogel formation with incorporated biosurfactants in their structure and then the formed gels are subjected to rheological and solubilization tests. The study of the internal structure of these gels is performed using a scanning electron microscope.
|
Page generated in 0.0743 seconds