1 |
PHYSIOLOGICAL MECHANISMS OF DROUGHT TOLERANCE IN CASSAVA (MANIHOT ESCULENTA CRANTZ) (PLANT WATER RELATIONS, PHOTOSYNTHESIS, GROWTH, ARIZONA, COLOMBIA).Porto, Marcio Carvalho Marques January 1983 (has links)
The response of cassava (Manihot esculenta Crantz) to water stress was studied in two distinct sites (Tucson, Arizona and Santander de Quilichao, Colombia). A third experiment was conducted in Palmira, Colombia to evaluate the relationship between photosynthesis, relative humidity and yield of cassava cultivars HCol 1684. Plants stressed after 2 months of growth in Tucson reduced growth by reducing leaf formation, expansion and leaf area. Reductions in LAI due to stress imposed to MCol 1684 in Quilichao were attained by reducing leaf expansion rates and leaf formation in plants stressed after 3 months of age. Plants stressed later increased leaf fall and did not reduce leaf formation. Stress reduced dry matter production in all cultivars, especially when given to young plants. Stress also altered the patterns of dry matter partitioning in 3-month-old plants of MCol 1684, but not in those stressed at 6 months. Transpiration and diffusive conductances of MCol 1684 were reduced after 40 days of stress. These parameters were correlated to photosynthesis and leaf temperatures for non-stressed plants, and additionally with relative humidity in the plants stressed after 3 months of growth. Interestingly, leaf temperatures were lower in stressed plants of MCol 1684, which suggests that stressed cassava plants can avoid excessive heating caused by stomatal closure simply changing leaf orientation and increasing reflectance. Leaf water potential was slightly reduced by stress in Tucson except for MVen 218. Stressed plants of MCol 1684 in Quilichao showed lower values of (L) than those of non-stressed plants after 30-40 days of treatment, suggesting an adaptation of stressed plants acquired during the stress period. The effects of air humidity on stomatal functioning of MCol 1684 seems to be strong as suggested by the dependence of transpiration, conductances and photosynthesis on relative humidity.
|
2 |
Geração de biogás utilizando cama de aviário e manipueira / Biogas Generation Using poultry litter bed and Cassava WaterSuzuki, Ana Beatryz Prenzier 10 February 2012 (has links)
Made available in DSpace on 2017-07-10T15:14:47Z (GMT). No. of bitstreams: 1
Ana Beatriz.pdf: 636763 bytes, checksum: 45817df88d891cdcadcfe39bc37b67ea (MD5)
Previous issue date: 2012-02-10 / The demand for energy have been shown to be increasing and to meet this demand is
necessary to seek alternative sources of energy. This study aimed to verify the biogas
production by mixing the poultry litter with cassava wastewater for obtaining and analyzing
their biogas effluent and checking the reduction of organic load. Thus trying to solve the
environmental issue of the disposal thereof and producing clean, renewable energy
contributing to the Brazilian energy matrix. There were used batch digesters made of vinyl
and fed with different mixtures of biomass and thus verified the amount of biogas generated
and the biogas quality obtained. We found significant biogas productions of up to 0.39 and
0.30 L d-1 and load reductions which reached 81.94% / A procura por energia têm se mostrado cada vez maior e para suprir essa demanda é
necessário buscar fontes alternativas de energia. O presente trabalho teve como objetivo
verificar a produção de biogás através da mistura da cama de aviário com manipuiera para
obtenção de biogás e analisando seus efluentes e verificando a redução de carga orgânica.
Tentando assim resolver a questão ambiental da destinação dos mesmos e produzindo energia
limpa e renovável contribuindo para a matriz energética brasileira. Foram utilizados
biodigestores do tipo batelada feitos com PVC e alimentados com diferentes misturas da
biomassa podendo assim verificar a quantidade de biogás gerado e a qualidade do biogás
obtido. Foram encontradas Produções de biogás significativas de até 0,39 e 0,30 L d-1 e
reduções de carga que chegaram a 81,94%.
|
3 |
REMEDIAÇÃO DE SOLOS CONTAMINADOS POR METAIS PESADOS USANDO BIOSSURFACTANTE PRODUZIDO A PARTIR DE RESÍDUO AGROINDUSTRIAL / REMEDIATION OF CONTAMINATED SOILS BY HEAVY METALS APLYING BIOSURFACTANT PRODUCED FROM AGROINDUSTRIAL WASTEKummer, Larissa 21 February 2014 (has links)
Made available in DSpace on 2017-05-12T14:47:01Z (GMT). No. of bitstreams: 1
Larissa_ Kummer.pdf: 3836984 bytes, checksum: 1746a7b3c060c75c722565a4bf452739 (MD5)
Previous issue date: 2014-02-21 / High concentrations of heavy metals in the soil can affect the sustainability of ecosystems and the health of humans and animals. The metal availability in the environment is related to the characteristics of each element, historical and source of contamination, as well as the properties of each soil. The presence of more than one element is common in contaminated areas and their interaction can affect their behavior in the environment. Researches have been developed to study the behavior of metals in different types of soils and thus help in cases of remediation. In recent years, the soil washing with biosurfactant has been presented as a promising method of remediation with little or no effect on the physico-chemical and microbiological characteristics of the soil, but the costs of obtaining this biosurfactant are still high, because most manufacturers use artificial means for production. Thus, this study had the objective of evaluating the remediation potential of the biosurfactant obtained from the fermentation of cassava water through the action of the bacteria Bacillus subtilis. This biosurfactant was characterized as surfactin, an anionic lipopeptide. Soils of different origins were used, one of them typical of the southwestern state of Paraná and the other from the northwest. The soils were first evaluated according to their potential for adsorption of the elements copper, zinc and lead in monometallic and multimetalic conditions, representing non-competitive and competitive conditions respectively. This evaluation was carried out by tests of adsorption and application of the matematical models of Langmuir and Freündlich. Soils were characterized chemically, physically and mineralogically. After that, it was performed the process of artificial contamination of these soils for application in the experiments of soil washing with biosurfactant in different conditions, having pH and concentration of biosurfactant solution as the main variables. Furthermore, it was also assessed the adsorption s capacity for metals by biosurfactant in liquid medium. The results showed that metals have different behaviors related to the adsorption and desorption to soil and to the biosurfactant. The soil type is also very important for the efficiency of metal removal. The clay soil showed higher adsorption capacity and therefore lower capacity of metal removal when compared to the sandy soil. In general, the soils showed the following sequence of adsorption capacity: Pb > Cu > Zn. The Pb was the element that less desorved by the washing process. It can also be concluded that, when soils are contaminated by more than one element at the same time, its ability to leach is greater than when the element is alone in the medium. This situation occurs because of differences between the competitive processes that take place in the active sites. The washing experiments showed that the biosurfactant was not able to improve the efficiency of removal of metals. The results obtained by the control treatments (only pure water) had very similar values to those that contained biosurfactant. When the wash solution containing the biosurfactant was in high concentrations, decrease in removel efficiency was found in some of the samples. Analysis of high performance liquid chromatography showed that the biosurfactant was adsorbed to soil samples, which is the consequence of not observing the effectiveness of the extractor in the removal of metals. It is notable, however, that the surfactin obtained has the potential to bind to metals, since the tests of adsorption to metals was confirmed by experiments. According to the results obtained, it can be inferred that the surfactin has greater potential for metal removal in liquid media than in solid medium, because of the lower possibility of adsorption. In soil, the results indicated potential use of this biosurfactant as stabilizing of metals in methods of remediation "in situ". / Concentrações elevadas de metais pesados no solo podem afetar a sustentabilidade dos ecossistemas e também a saúde dos seres humanos e animais. A disponibilidade do metal no ambiente está relacionada às características de cada elemento, histórico e fonte de contaminação, bem como às propriedades de cada solo. A presença de mais de um elemento em áreas contaminadas é comum e a interação entre eles pode afetar o seu comportamento no ambiente. Diante do problema, pesquisas vêm sendo realizadas a fim de estudar o comportamento dos metais em diferentes tipos de solos e assim auxiliar nos procesos de remediação. Nos últimos anos, a lavagem do solo com biossurfactante tem sido apresentada como um método promissor de remediação com pequeno ou nenhum efeito sobre as características físico-químicas e microbiológicas do solo, porém os custos de obtenção deste biossurfactante ainda são altos, pois a maioria dos fabricantes utiliza meios artificiais para sua produção. Neste sentido, este trabalho teve como objetivo geral avaliar o potencial de remediação do biossurfactante obtido a partir do bioprocessamento da manipueira pela ação de bactérias Bacillus subtilis. Este biossurfactante foi caracterizado como surfactina, um lipopeptídeo aniônico. Foram utilizados solos de origens distintas, sendo um deles típico da região sudoeste do estado do Paraná e outro da região noroeste. Os solos utilizados foram primeiramente avaliados de acordo com o seu potencial de adsorção dos elementos cobre, zinco e chumbo em condições monometálicas e multimetálicas, representando condições não-competitivas e competitivas, respectivamente. Esta avaliação foi feita por meio de testes de adsorção e aplicação de modelos matemáticos de Langmuir e Freündlich. Os solos foram caracterizados química, física e mineralogicamente. A partir de então realizou-se o processo de contaminação artificial destes solos para posterior aplicação dos experimentos de lavagem com o biossurfactante em diferentes condições, sendo as variáveis pH e concentração da solução de biossurfactante como as principais. Além disso, também foi avaliada a capacidade de adsorção dos metais pelo próprio biossurfactante, em meio líquido. Os resultados mostraram que os metais apresentam comportamentos distintos quanto a adsorção e dessorção ao solo e ao biossurfactante. O tipo de solo também é muito importante para a avaliação da eficiência de remoção de metais. O solo argiloso apresentou maior capacidade de adsorção e consequentemente menor capacidade de remoção dos metais quando comparado ao solo arenoso. De modo geral, os solos apresentaram a seguinte sequência de capacidade de adsorção: Pb > Cu > Zn. O Pb foi o elemento que menos dessorveu pelos processos de lavagem. Foi possível também concluir que quando os solos estão contaminados por mais de um elemento ao mesmo tempo, a capacidade de lixiviar-se é maior do que quando o elemento está sozinho no meio. Esta situação ocorre em virtude dos processos competitivos existentes entre os sítios ativos. Os experimentos de lavagem mostraram que o biossurfactante não foi capaz de melhorar a eficiência de remoção dos metais. Os resultados obtidos pelos tratamentos controle (somente água pura) tiveram valores muito semelhantes aos que continham biossurfactante. Quando a solução de lavagem continha o biossurfactante em altas concentrações, foi encontrada, em algumas amostras, queda na eficiência de remoção. Análises de cromatografia líquida permitiram concluir que o biossurfactante foi adsorvido às amostras de solo, sendo esta a consequência da não observação da eficácia do extrator na remoção dos metais. Cabe ressaltar, entretanto, que a surfactina obtida apresenta potencial de ligar-se aos metais, uma vez que os testes de adsorção desta aos metais foi confirmado pelos experimentos realizados. De acordo com os resultados encontrados, pode-se inferir que a surfactina tem maior potencial de remoção de metais em meio líquido do que em meio sólido, devido a menor possibilidade de adsorção na matriz sólida. Em solo, os resultados indicaram potencial de utilização deste biossurfactante como agente de estabilização dos metais em métodos de remediação in situ .
|
4 |
REMEDIAÇÃO DE SOLOS CONTAMINADOS POR METAIS PESADOS USANDO BIOSSURFACTANTE PRODUZIDO A PARTIR DE RESÍDUO AGROINDUSTRIAL / REMEDIATION OF CONTAMINATED SOILS BY HEAVY METALS APLYING BIOSURFACTANT PRODUCED FROM AGROINDUSTRIAL WASTEKummer, Larissa 21 February 2014 (has links)
Made available in DSpace on 2017-07-10T19:23:48Z (GMT). No. of bitstreams: 1
Larissa_ Kummer.pdf: 3836984 bytes, checksum: 1746a7b3c060c75c722565a4bf452739 (MD5)
Previous issue date: 2014-02-21 / High concentrations of heavy metals in the soil can affect the sustainability of ecosystems and the health of humans and animals. The metal availability in the environment is related to the characteristics of each element, historical and source of contamination, as well as the properties of each soil. The presence of more than one element is common in contaminated areas and their interaction can affect their behavior in the environment. Researches have been developed to study the behavior of metals in different types of soils and thus help in cases of remediation. In recent years, the soil washing with biosurfactant has been presented as a promising method of remediation with little or no effect on the physico-chemical and microbiological characteristics of the soil, but the costs of obtaining this biosurfactant are still high, because most manufacturers use artificial means for production. Thus, this study had the objective of evaluating the remediation potential of the biosurfactant obtained from the fermentation of cassava water through the action of the bacteria Bacillus subtilis. This biosurfactant was characterized as surfactin, an anionic lipopeptide. Soils of different origins were used, one of them typical of the southwestern state of Paraná and the other from the northwest. The soils were first evaluated according to their potential for adsorption of the elements copper, zinc and lead in monometallic and multimetalic conditions, representing non-competitive and competitive conditions respectively. This evaluation was carried out by tests of adsorption and application of the matematical models of Langmuir and Freündlich. Soils were characterized chemically, physically and mineralogically. After that, it was performed the process of artificial contamination of these soils for application in the experiments of soil washing with biosurfactant in different conditions, having pH and concentration of biosurfactant solution as the main variables. Furthermore, it was also assessed the adsorption s capacity for metals by biosurfactant in liquid medium. The results showed that metals have different behaviors related to the adsorption and desorption to soil and to the biosurfactant. The soil type is also very important for the efficiency of metal removal. The clay soil showed higher adsorption capacity and therefore lower capacity of metal removal when compared to the sandy soil. In general, the soils showed the following sequence of adsorption capacity: Pb > Cu > Zn. The Pb was the element that less desorved by the washing process. It can also be concluded that, when soils are contaminated by more than one element at the same time, its ability to leach is greater than when the element is alone in the medium. This situation occurs because of differences between the competitive processes that take place in the active sites. The washing experiments showed that the biosurfactant was not able to improve the efficiency of removal of metals. The results obtained by the control treatments (only pure water) had very similar values to those that contained biosurfactant. When the wash solution containing the biosurfactant was in high concentrations, decrease in removel efficiency was found in some of the samples. Analysis of high performance liquid chromatography showed that the biosurfactant was adsorbed to soil samples, which is the consequence of not observing the effectiveness of the extractor in the removal of metals. It is notable, however, that the surfactin obtained has the potential to bind to metals, since the tests of adsorption to metals was confirmed by experiments. According to the results obtained, it can be inferred that the surfactin has greater potential for metal removal in liquid media than in solid medium, because of the lower possibility of adsorption. In soil, the results indicated potential use of this biosurfactant as stabilizing of metals in methods of remediation "in situ". / Concentrações elevadas de metais pesados no solo podem afetar a sustentabilidade dos ecossistemas e também a saúde dos seres humanos e animais. A disponibilidade do metal no ambiente está relacionada às características de cada elemento, histórico e fonte de contaminação, bem como às propriedades de cada solo. A presença de mais de um elemento em áreas contaminadas é comum e a interação entre eles pode afetar o seu comportamento no ambiente. Diante do problema, pesquisas vêm sendo realizadas a fim de estudar o comportamento dos metais em diferentes tipos de solos e assim auxiliar nos procesos de remediação. Nos últimos anos, a lavagem do solo com biossurfactante tem sido apresentada como um método promissor de remediação com pequeno ou nenhum efeito sobre as características físico-químicas e microbiológicas do solo, porém os custos de obtenção deste biossurfactante ainda são altos, pois a maioria dos fabricantes utiliza meios artificiais para sua produção. Neste sentido, este trabalho teve como objetivo geral avaliar o potencial de remediação do biossurfactante obtido a partir do bioprocessamento da manipueira pela ação de bactérias Bacillus subtilis. Este biossurfactante foi caracterizado como surfactina, um lipopeptídeo aniônico. Foram utilizados solos de origens distintas, sendo um deles típico da região sudoeste do estado do Paraná e outro da região noroeste. Os solos utilizados foram primeiramente avaliados de acordo com o seu potencial de adsorção dos elementos cobre, zinco e chumbo em condições monometálicas e multimetálicas, representando condições não-competitivas e competitivas, respectivamente. Esta avaliação foi feita por meio de testes de adsorção e aplicação de modelos matemáticos de Langmuir e Freündlich. Os solos foram caracterizados química, física e mineralogicamente. A partir de então realizou-se o processo de contaminação artificial destes solos para posterior aplicação dos experimentos de lavagem com o biossurfactante em diferentes condições, sendo as variáveis pH e concentração da solução de biossurfactante como as principais. Além disso, também foi avaliada a capacidade de adsorção dos metais pelo próprio biossurfactante, em meio líquido. Os resultados mostraram que os metais apresentam comportamentos distintos quanto a adsorção e dessorção ao solo e ao biossurfactante. O tipo de solo também é muito importante para a avaliação da eficiência de remoção de metais. O solo argiloso apresentou maior capacidade de adsorção e consequentemente menor capacidade de remoção dos metais quando comparado ao solo arenoso. De modo geral, os solos apresentaram a seguinte sequência de capacidade de adsorção: Pb > Cu > Zn. O Pb foi o elemento que menos dessorveu pelos processos de lavagem. Foi possível também concluir que quando os solos estão contaminados por mais de um elemento ao mesmo tempo, a capacidade de lixiviar-se é maior do que quando o elemento está sozinho no meio. Esta situação ocorre em virtude dos processos competitivos existentes entre os sítios ativos. Os experimentos de lavagem mostraram que o biossurfactante não foi capaz de melhorar a eficiência de remoção dos metais. Os resultados obtidos pelos tratamentos controle (somente água pura) tiveram valores muito semelhantes aos que continham biossurfactante. Quando a solução de lavagem continha o biossurfactante em altas concentrações, foi encontrada, em algumas amostras, queda na eficiência de remoção. Análises de cromatografia líquida permitiram concluir que o biossurfactante foi adsorvido às amostras de solo, sendo esta a consequência da não observação da eficácia do extrator na remoção dos metais. Cabe ressaltar, entretanto, que a surfactina obtida apresenta potencial de ligar-se aos metais, uma vez que os testes de adsorção desta aos metais foi confirmado pelos experimentos realizados. De acordo com os resultados encontrados, pode-se inferir que a surfactina tem maior potencial de remoção de metais em meio líquido do que em meio sólido, devido a menor possibilidade de adsorção na matriz sólida. Em solo, os resultados indicaram potencial de utilização deste biossurfactante como agente de estabilização dos metais em métodos de remediação in situ .
|
Page generated in 0.048 seconds