• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 418
  • 181
  • 133
  • 40
  • 33
  • 25
  • 24
  • 18
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1072
  • 165
  • 126
  • 123
  • 121
  • 119
  • 102
  • 102
  • 91
  • 89
  • 78
  • 75
  • 75
  • 73
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Hodnocení porezity u tlakově litých odlitků z Al slitin / Evaluation of porosity in Al-alloy die-castings

Straka, Jakub January 2011 (has links)
The purpose of this diploma thesis is an evaluation of die-castings porosity, eventually the evaluation of seats with local squeeze in connection with their mechanical and structural properties. The swatches of alloy AISi9Cu3 were taken from the engine block made by Škoda Auto Company, Mladá Boleslav. To the evaluation and the comparison of the results there were used value of porosity with own measure and other student´s thesis of Brno University of technology. Sets of mechanical and structural properties were selected, evaluated and tested by statistical programs.
322

Hodnocení porezity u tlakově litých odlitků z Al slitin / Evaluation of porosity in Al-alloy die-castings

Havel, Jiří January 2012 (has links)
The aim of this diploma thesis is to analyse the porosity of die - cast cast that were made of the alloy AISi9u3 in iron-foundry Skoda Car Mlada Boleslav. The analysis and the sample comparisons are based on my own measurements and are also connected with previous diploma thesis which deals with that issue and was drawn up at Technical University in Brno. All measurements were statistically tested.
323

Optimalizace lití a tuhnutí axiálních turbínových kol pro dosažení jemnozrnné struktury v odlitku / Optimalisation of casting and solidification behaviour axial turbo wheels to achieve fine-grained structure in the castings

Matoušek, Roman January 2016 (has links)
The aim of this thesis is to investigate the influence of the structure of castings from the nickel superalloy Inconel 713 LC using rotation and cycling by casting table. The aim is to achieve a fine-grained structure and the best mechanical properties through varying the oscillation parameters during casting crystallization. Six castings of axial turbine wheel were initially casted for the purpose of this thesis. After evaluating their macrostructure, microstructure and mechanical properties, four additional axial turbine wheels were casted in order to validate the results.
324

Mapping Energy Usage in Casting Process for Cylinder Head Production : Using System Dynamic Modeling and Simulation

Adane, Tigist Fetene January 2011 (has links)
Daily life of our societies is strongly linked with the usage of natural resources. However, the vital resources of our planet especially energy is a limited resource. The energy consumption in the manufacturing industry is increasing and becoming noticeable; moreover it is being consumed in ways that can’t be sustained. There is great concern about minimizing the consumption of energy usage in the manufacturing industry and sustaining the natural carrying capacity of the ecosystem as well. This is one of the important challenges in today’s industrial world. This research work looks into one of the energy intensive manufacturing processes i.e. the casting process in automotive industry. Here the casting process for cylinder head manufacturing at one of the manufacturing plant in Europe is studied for identifying the most energy intensive steps namely melting, holding and pouring. Parameters that influence these steps and the relationships for energy consumption and dissipation have also been identified through extensive literature survey. By applying system dynamics modeling and simulation approach the interaction between each parameter in the overall process is analyzed in regard to energy consumption. By varying values of the parameters that have the highest impact in the process, the breakthrough opportunities that might dramatically reduce energy consumption during melting and holding have been explored, and potentially energy-saving areas based on the findings have also been identified. The output from this research work enables the company to identify potential avenues to optimize energy usage in the production and hence sustain its manufacturing.
325

Optimisation of casting process of sand cast austenitic stainless-steel pump impeller using numerical modelling and additive manufacturing

Mugeri, Hudivhamudzimu 12 1900 (has links)
M. Tech. (Department of Metallurgical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / The production of austenitic stainless-steel pump impellers in foundries present a huge challenge mainly due to its thin-walled blades, pouring temperature, presence of junctions and chemical composition. Two different alloys were used namely nodular cast iron and austenitic stainless-steel. Nodular cast iron was used as a comparison alloy due to its excellent flowability whereas austenitic stainless-steel was chosen due to its attractive corrosion and wear resistant properties. Austenitic stainless-steel alloy showed difficulties during casting because of its chemical composition and freezing range. Thin-walled sections are more susceptible to filling defects like misrun and cold-shut. This results in high scrap rate and high processing costs during high production of thin-walled components. High pouring temperature is considered one of the most effective methods to improve filling ability of thin-walled castings. However, there is a major drawback in using this method owing to the high occurrence of shrinkage defects and hot tearing especially at junctions. 1060 aluminium was used as a benchmark to evaluate the effect of wall thickness on the filling and feeding of thin-walled Al components with complex geometry during sand casting. The aim of this dissertation is therefore to optimize casting process of sand cast austenitic stainless-steel pump impeller. Numerical modelling and additive manufacturing were used to optimize the production of this product. The use of casting simulation software combined with three-dimensional (3D) mould printing technology has enabled optimisation of casting parameters to minimise the occurrence of casting defects. Casting parameters of five test samples of complex geometry and varying thicknesses (1.0 mm;1.5 mm;2 mm;2.5 mm and 3.0 mm) were optimised using MAGMAsoft® at a constant pouring temperature of 700 °C and 1060 Aluminium as an alloy. Simulation and casting results showed that complete filling was only possible at a wall thickness of 3 mm. The simulation results showed that as the wall thickness increased from 1 mm to 3 mm the filling ability increased by 67.5 % whereas experimental casting results showed that filling ability increase by 75 %. The combination of MAGMAsoft® simulation and 3D printed moulds proved to be effective tools in predicting filling and feeding of thin-walled aluminium components during sand casting. MAGMAsoft® casting software was used to simulate metal flow and predict the degree of filling at different pouring temperatures. Test samples were cast using 1060 Aluminium alloy at temperatures of 702 °C, 729 °C, 761 °C, 794 °C, 800 °C and 862 °C. Complete mould filling was predicted at 800 °C using the simulation model and 761°C during actual casting. At temperatures above 761°C tearing at the junction was quite pronounced. An optimal of 761°C pouring temperature was found to be appropriate pouring temperature when casting thin-walled aluminum components using sand casting. MAGMAsoft® casting software proved to be an effective tool in optimizing filling and feeding of thin-walled aluminium components during sand casting. Nodular cast iron pump impeller was optimized at 1500 °C using MAGMAsoft® and 3D mould printing technology. Design variables used were feeder radius (17 mm, 18 mm, 19 mm and 20 mm), feeder height (32 mm, 33 mm, 34 mm, 35 mm) and number of feeders of (3, 4 and 5). Simulation and casting results showed a completely-filled casting. The high fluidity of nodular cast iron promotes mould filling ability and prevent any form of misrun defect. Minimum shrinkage was noted at the junctions and top surface of the casting. A new design was proposed to eliminate shrinkage defects at the junctions of the nodular cast iron pump impeller. The design used a tapered circular runner bar with straight ingates. Optimization of nodular cast iron was now done at 1390 °C with the use of MAGMAsoft® and real casting was done 1385 °C. Simulation and casting were in correlation to each other since both showed completely-filled mould cavity with no misrun, cold-shut and shrinkage porosity defect. Simulation proved to be an effective tool in optimizing filling and solidification of nodular cast iron during sand casting. Austenitic stainless-steel pump impeller was optimized at 1500 °C using MAGMAsoft® and 3D mould printing technology. A high quality mould and core print were printed with the use of Voxeljet VX1000 at a minimum period of time. Design variables used were feeder radius (17 mm, 18 mm, 19 mm and 20 mm), feeder height (32 mm, 33 mm, 34 mm, 35 mm) and number of feeders of (3, 4 and 5). An increase in feeder size and the number of feeders greatly reduced hot spot and porosity of the casting but it also reduced the casting yield. The quality of the casting was found to be inversely proportional to the casting yield. Simulation showed a completely-filled casting with actual casting showing only 50 % filling ability. High viscosity of the molten metal and thin walled blades promote quick solidification which caused misrun defects. A new design was proposed to eliminate misrun defects of the first design. MAGMAsoft® was used to optimize this design at 1550 °C. The design used a tapered circular runner bar with tapered ingates. The actual casting showed improved filling ability from 50 % to 80 % while simulation showed completely-filled mould cavity (100 %). Major factors which contributed to low filling ability of austenitic stainless-steel pump impeller were chemistry, runner system and men. Numerical modelling and additive manufacturing did optimize filling and feeding of sand cast austenitic stainless-steel pump impeller.
326

Development of Mg-Al-Sn and Mg-Al-Sn-Si Alloys and Optimization of Super Vacuum Die Casting Process for Lightweight Applications

Klarner, Andrew Daniel 01 June 2018 (has links)
No description available.
327

A Study of Mixed Manufacturing Methods in Sand Casting Using 3D Sand Printing and FDM Pattern-making Based on Cost and Time

Gullapalli, Ram A. January 2016 (has links)
No description available.
328

Comparison of different aluminium casting processes from an environmental perspective : Case study on plaster mould castings produced in Mid Sweden

Schaub, Henning January 2018 (has links)
While Aluminium has lots of unique properties and is seen as a material of the future, its production and manufacturing has significant environmental impacts. For complex and dimensional shapes casting remains the main manufacturing method and in this study the environmental pressure of different casting techniques is compared. A screening LCA is conducted to determine the environmental impacts of plaster mould castings in a case study at the Ventana Hackås AB foundry in Mid Sweden. The findings are compared to models of sand, pressure die and lost wax castings, based on literature datasets. The most relevant factors for the environmental performance are identified as the production of the aluminium alloy and the amount and source of energy. For plaster mould castings additionally the plaster consumption is significant, while lost wax castings are dominated by the mould production and general processes. Under similar circumstances a relatively similar performance was found for all casting techniques except the lost wax process, which is at least 3 times more emission intensive. Of the remaining techniques pressure die castings performed the best and plaster mould castings the worst, but different sources of uncertainties have been identified in this comparison. In addition a carbon footprint interface is created based on these findings, to enable specific comparisons of different casting method setups. Customizable variables allow the adaptation of three scenarios to real world conditions. As the main influencing factors the aluminium alloy, source of electricity and casting technique have been identified. / <p>2018-10-10</p>
329

PROCESSAMENTO DE CERÂMICAS COM POROSIDADE GRADUADA UTILIZANDO AS TÉCNICAS DE FREEZE CASTING E COLAGEM DE BARBOTINA

Carvalho, Gustavo Antoniácomi de 30 January 2018 (has links)
Submitted by Angela Maria de Oliveira (amolivei@uepg.br) on 2019-02-27T11:49:16Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Gustavo Antoniacomi de Carvalho.pdf: 6310308 bytes, checksum: 8e1efd9d86bc5a1adf80b45bba2a3985 (MD5) / Made available in DSpace on 2019-02-27T11:49:16Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Gustavo Antoniacomi de Carvalho.pdf: 6310308 bytes, checksum: 8e1efd9d86bc5a1adf80b45bba2a3985 (MD5) Previous issue date: 2018-01-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Cerâmicas porosas vêm ganhando visibilidade devido a algumas aplicações tecnológicas interessantes, tais como a utilização em eletrólitos sólidos, ânodos de células a combustível, filtros cerâmicos e reposição óssea e dental. Dentre elas, há especial atenção ao estudo de materiais porosos com porosidade graduada, nos quais a quantidade de poros e a morfologia dos mesmos se alteram pelo volume do material. Nesse trabalho foi realizado o processamento e caracterização de materiais cerâmicos de alumina com porosidade graduada a partir das técnicas de freeze casting e colagem de barbotina, utilizando hidróxido de alumínio e amido de arroz como fases de sacrifício. Após a conformação das amostras por esses métodos, a porosidade foi caracterizada por microscopia eletrônica de varredura, pelas medidas de porosidade aparente feita pelo Princípio de Arquimedes e pela distribuição de tamanho de poros feita pela técnica de porosimetria de mercúrio. Foi avaliada também a resistência mecânica das amostras a partir de ensaio de compressão. Foi confirmada a relação entre as amostras processados isoladamente e suas respectivas camadas nas amostras graduadas. Foi observada também uma boa interação interfacial entre cada uma das camadas das amostras graduadas. A porosidade das amostras com porosidade graduada se manteve próxima do esperado, o valor esperado foi determinado a partir da média das amostras processadas isoladamente em relação às camadas do material com porosidade graduada. O ensaio mecânico demonstrou que não houve influência das interfaces dos materiais graduados na sua resistência à compressão. / Porous ceramics have been gaining visibility due to some interesting technological applications, such as its use as solid electrolytes, fuel cell anodes, ceramic filters and bone and dental reposition. Among them, there is special care in studying graded porosity materials, where the quantity of pores and pore morphology changes through the material volume. In this work the processing and characterization of alumina ceramic materials with functionally graded porosity by freeze casting and slip casting techniques using aluminum hydroxide and rice starch as sacrificial template was performed. After conformation, the porosity was characterized through electron scanning microscopy, apparent porosity through Archimedes method and median pore size through mercury porosimetry. The mechanical resistance was also obtained by compression testing. The analysis allowed to confirm the relation between each of the isolated samples’ microstructure and its respective layer in each of the graded materials, also, the graded materials shown good interfacial interaction between each of the layers. The porosity in graded materials kept close to the expected value, which was determined by the medium value of the porosities of the isolated samples respective to the graded material. Mechanical testing shown that there was no influence of the graded material interfaces in its compressive strength.
330

Intégration de matériaux oxydes innovants dans une cellule IT-SOFC / Integration of innovative oxide materials in an IT-SOFC

Morandi, Anne 04 April 2013 (has links)
Cette thèse vise à évaluer le potentiel d'un nouveau couple cathode / électrolyte pour une application en IT-SOFC (700°C), par le biais de l’élaboration et du test de cellules à anode support de configuration planaire. Les matériaux concernés sont l'électrolyte BaIn0.3Ti0.7O2.85 (BIT07), de structure perovskite, et les nickelates de terres rares Ln2-xNiO4+ (LnN, Ln = La, Nd, Pr) en tant que cathodes ; ces matériaux ont montré des propriétés prometteuses dans des travaux préliminaires effectués à l'IMN et l'ICMCB. La première partie de cette thèse porte sur la mise en place d'un protocole d'élaboration de cellules complètes utilisant des techniques bas coûts et industrialisables (cellules de taille 3 x 3 cm2) : l’anode Ni / BIT07 a été élaborée par coulage en bande, l'électrolyte BIT07 par vacuum slip casting et les cathodes par sérigraphie. Les mesures électrochimiques réalisées sur une première génération de cellules ont mis en évidence la nécessité d'ajouter une couche barrière de GDC entre les cathodes LnN et l'électrolyte BIT07. Les meilleures performances ont été obtenues pour une cellule BIT07 / Ni | BIT07 | GDC | PrN, avec une densité de puissance à 700°C et 0.7 V de 176 mW cm-2 pour une faible résistance de polarisation de 0. 29 Ω cm2. La principale limitation des performances a été identifiée comme étant la résistance interne du banc de test, donnant lieu à des valeurs de résistances séries anormalement élevées. Cette cellule a été opérée avec succès durant plus de 500 heures sous courant, avec néanmoins une vitesse de dégradation extrapolée élevée de l’ordre de 27% / kh. / This thesis aimed at assessing the potential of a novel cathode / electrolyte couple for IT-SOFC applications (700°C), through the elaboration and testing of planar anode-supported cells. The materials involved were the perovskite-structured BaIn0.3Ti0.7O2.85 (BIT07) electrolyte and the rare earth nickelate Ln2-xNiO4+ (LnN, Ln = La, Nd, Pr) cathodes, both materials having shown promising properties in preliminary work done at the IMN and the ICMCB. The first part of this thesis concerned the implementation of a cell elaboration protocol using low-cost and scalable shaping techniques (cell size 3 x 3 cm2); namely, the Ni / BIT07 anodes were elaborated by tape casting, the BIT07 electrolyte by vacuum slip casting and the cathodes by screen printing. Comparison of electrochemical results for a first and second generation of cells highlighted the usefulness of adding a GDC buffer layer in between the LnN cathodes and the BIT07 electrolyte. The best performance has been obtained for a cell BIT07 / Ni | BIT07 | GDC | PrN, with a power density at 700°C and 0.7 V of 176 mW cm-2 for a competitive polarisation resistance of 0.29 Ω cm2. The main limitation of the performance has been determined to be related to the internal resistance of the test setup, giving anomalously high series resistances. This cell has been successfully operated beyond 500 hours under current, although with a fairly high extrapolated degradation rate of 27% / kh.

Page generated in 0.0774 seconds