371 |
Optimisation of the mechanical properties of a modified aluminium 7% silicon-magnesium casting alloy by heat treatment22 September 2015 (has links)
Due to the problem of obtaining the predicted mechanical properties for Al-Si alloys, especially after heat treatment, trial batches of sodium, strontium and unmodified alloys were cast. The alloys were cast using a standard test bar design. The material was solution treated, quenched and aged (at both increasing time and temperature) to obtain the best properties possible. Initial background information and theory was obtained at libraries to obtain a better working knowledge of the alloy...
|
372 |
Holy Union?Dyen, Erica Gayle 01 January 2007 (has links)
Appearances and first impressions are deceiving. My figurines represent the twisted world where everything on the surface appears to be perfect, but there are skeletons in everyone's closet.
|
373 |
The Porcelain GroupsChance, Robert Edward 01 January 1975 (has links)
My background in clay has emphasized the development of technical considerations in functional ceramics as well as the search for personal images. The past two years have seen an emphasis on the exploration of technical areas chosen to lead to the development of a familiarity with techniques and a solidification of statement. The process has nurtured in me the realization that the objects I produce do not represent an attempt to attain an axiom of art but are personal statements developed through an empirical use of forms and images.
|
374 |
One Script, Two Perspectives: Generation Me and the Staging of Really ReallyHensley, Kirstin R 01 January 2015 (has links)
Really, Really, by Paul Downs Colaizzo, is loosely based on the 2006 Duke University sexual assault scandal resulting from what proved to be a false accusation of rape made against three members of the men’s lacrosse team. After individually reading the play, Jorge Burmudez and I both arrived at differing opinions of who was the true victim, in turn inspiring this thesis, which is an exploration of two separate productions of the play demonstrating contrasting perspectives/outlooks regarding sex crimes within sports organizations in the university setting. It will describe our process from conceptualization to a post-mortem talking about particular challenges we faced along with feedback from both casts and audience members who saw the shows. Included will also be my experience with pre-production, auditions/casting, rehearsal journals and post-production documentation of my individual directorial processes. In the end, we are researching where the blame lies in the crime detailed in this play.
|
375 |
Studies of anode supported solid oxide fuel cells (SOFCs) based on La- and Ca-Doped SrTiO₃Lu, Lanying January 2015 (has links)
Solid oxide fuel cells (SOFCs) have attracted much interest as the most efficient electrochemical device to directly convert chemical energy to usable electrical energy. The porous Ni-YSZ anode known as the state-of-the-art cermet anode material is found to show serious degradation when using hydrocarbon as fuel due to carbon deposition, sulphur poisoning, and nickel sintering. In order to overcome these problems, doped strontium titanate has been investigated as a potential anode material due to its high electronic conductivity and stability in reducing atmosphere. In this work, A-site deficient strontium titanate co-doped with lanthanum and calcium, La₀.₂Sr₀.₂₅Ca₀.₄₅TiO₃ (LSCT[sub](A-)), was examined. Flat multilayer ceramics have been produced using the aqueous tape casting technique by controlling the sintering behaviour of LSCT[sub](A-), resulting in a 450µm thick porous LSCT[sub](A-) scaffold with a well adhered 40µm dense YSZ electrolyte. Impregnation of CeO₂ and Ni results in a maximum power density of 0.96Wcm⁻² at 800°C, higher than those of without impregnation (0.124Wcm⁻²) and with impregnation of Ni alone (0.37Wcm⁻²). The addition of catalysts into LSCT[sub](A-) anode significantly reduces the polarization resistance of the cells, suggesting an insufficient electrocatalytic activity of the LSCT[sub](A-) backbone for hydrogen oxidation, but LSCT[sub](A-) can provide the electronic conductivity required for anode. Later, the cells with the configuration of LSCT[sub](A-)/YSZ/LSCF-YSZ were prepared by the organic tape casting and impregnation techniques with only 300-m thick anode as support. The effects of metallic catalysts in the anode supports on the initial performance and stability in humidified hydrogen were discussed. The nickel and iron impregnated LSCT[sub](A-) cell exhibits a maximum powder density of 272mW/cm² at 700°C, much larger than 43mW/cm² for the cell without impregnation and 112mW/cm² for the cell with nickel impregnation. Simultaneously, the bimetal Ni-Fe impregnates have significantly reduced the degradation rates in humidified hydrogen (3% H₂O) at 700°C. The enhancement from impregnation of the bi-metal can possibly be the result of the presence of ionic conducting Wustite Fe₁₋ₓO that resides underneath the Ni-Fe metallic particles and better microstructure. Third, in order to improve the ionic conductivity of the anode support and increase the effective TPBs, ionic conducting ceria was impregnated into the LSCT[sub](A-) anode, along with the metallic catalysts. The CeO₂-LSCT[sub](A-) cell shows a poor performance upon operation in hydrogen atmosphere containing 3% H₂O; and with addition of metallic catalysts, the cell performance increases drastically by almost three-fold. However, the infiltrated Ni particles on the top of ceria layer cause the deposition of carbon filament leading to cell cracking when exposure to humidified methane (3% H₂O). No such behaviour was observed on the CeO₂-NiFe impregnated anode. The microstructure images of the impregnated anodes at different times during stability testing demonstrate that the grain growth of catalysts, the interaction between the anode backbone and infiltrates, and the spalling of the agglomerated catalysts are the main reasons for the performance degradation. Fourth, the YSZ-LSCT[sub](A-) composites including the YSZ contents of 5-80wt.% were investigated to determine the percolation threshold concentration of YSZ to achieve electronic and ionic conducting pathways when using the composite as SOFC anode backbone. The microstructure and dilatometric curves show that when the YSZ content is below 30%, the milled sample has a lower shrinkage than the unmilled one due to the blocking effect from the well distributed YSZ grains within LSCT[sub](A-) bulk. However, at the YSZ above 30% where two phases start to form the individual and interconnected bulk, the composites without ball milling process show a lower densification. The impact of YSZ concentration and ball milling process on the electrical properties of the composites reveals that the percolation threshold concentration is not only dependant on the actual concentration, but also related to the local arrangement of two phases. In Napier University, the electroless nickel-ceramic co-depositon process was investigated as a manufacturing technique for the anodes of planar SOFCs, which entails reduced costs and reduced high-temperature induced defects, compared with conventional fabrication techniques. The Ni-YSZ anodes prepared by the electroless co-deposition technique without the addition of surfactant adhere well to the YSZ electrolyte before and after testing at 800°C in humidified hydrogen. Ni-YSZ anodes co-deposited with pore-forming starch showed twice the maximum power density compared with those without the starch. It has therefore been demonstrated that a porous Ni-YSZ cermet structure was successfully manufactured by means of an electroless plating technique incorporating pore formers followed by firing at 450°C in air. Although the use of surfactant (CTAB) increases the plating thickness, it induces the formation of a Ni-rich layer on the electrolyte/anode interface, leading to the delamination of anode most likely due to the mismatched TECs with the adjacent YSZ electrolyte.
|
376 |
A Study on Particle Motion and Deposition Rate : Application in Steel FlowsNi, Peiyuan January 2015 (has links)
Non-metallic inclusions in molten steel have received worldwide attention due to their serious influence on both the steel product quality and the steel production process. These inclusions may come from the de-oxidation process, the re-oxidation by air and/or slag due to an entrainment during steel transfer, and so on. The presence of some inclusion types can cause a termination of a casting process by clogging a nozzle. Thus, a good knowledge of the inclusion behavior and deposition rate in steel flows is really important to understand phenomena such as nozzle clogging. In this thesis, inclusion behaviors and deposition rates in steel flows were investigated by using mathematical simulations and validation by experiments. A ladle teeming process was simulated and Ce2O3 inclusion behavior during a teeming stage was studied. A Lagrangian method was used to track the inclusions in a steel flow and to compare the behaviors of inclusions of different sizes. In addition, a statistical analysis was conducted by the use of a stochastic turbulence model to investigate the behaviors of different-sized inclusions in different nozzle regions. The results show that inclusions with a diameter smaller than 20 μm were found to have similar trajectories and velocity distributions in the nozzle. The inertia force and buoyancy force were found to play an important role for the behavior of large-size inclusions or clusters. The statistical analysis results indicate that the region close to the connection region of the straight pipe and the expanding part of the nozzle seems to be very sensitive for an inclusion deposition. In order to know the deposition rate of non-metallic inclusions, an improved Eulerian particle deposition model was developed and subsequently used to predict the deposition rate of inclusions. It accounts for the differences in properties between air and liquid metals and considers Brownian and turbulent diffusion, turbophoresis and thermophoresis as transport mechanisms. A CFD model was firstly built up to obtain the friction velocity caused by a fluid flow. Then, the friction velocity was put into the deposition model to calculate the deposition rate. For the case of inclusion/particle deposition in vertical steel flows, effects on the deposition rate of parameters such as steel flow rate, particle diameter, particle density, wall roughness and temperature gradient near a wall were investigated. The results show that the steel flow rate/friction velocity has a very important influence on the rate of the deposition of large particles, for which turbophoresis is the main deposition mechanism. For small particles, both the wall roughness and thermophoresis have a significant influence on the particle deposition rate. The extended Eulerian model was thereafter used to predict the inclusion deposition rate in a submerged entry nozzle (SEN). Deposition rates of different-size inclusions in the SEN were obtained. The result shows that the steel flow is non-uniform in the SEN of the tundish. This leads to an uneven distribution of the inclusion deposition rates at different locations of the inner wall of the SEN. A large deposition rate was found to occur at the regions near the SEN inlet, the SEN bottom and the upper region of two SEN ports. For the case of an inclusion/particle deposition in horizontal straight channel flows, the deposition rates of particles at different locations of a horizontal straight pipe cross- section were found to be different due to the influence of gravity and buoyancy. For small particles with a small particle relaxation time, the gravity separation is important for their deposition behaviors at high and low parts of the horizontal pipe compared to the turbophoresis. For large particles with a large particle relaxation time, turbophoresis is the dominating deposition mechanism. / <p>QC 20150326</p>
|
377 |
Process development for investment casting of thin-walled components : Manufacturing of light weight componentsRaza, Mohsin January 2015 (has links)
Manufacturing processes are getting more and more complex with increasing demands of advanced and light weight engineering components, especially in aerospace industry. The global requirements on lower fuel consumption and emissions are increasing the demands in lowering weight of cast components. Ability to produce components in lower wall thickness will not only help to reduce the cost of production but also help to improve the efficiency of engineering systems resulting in lower fuel consumption and lesser environmental hazardous emissions. In order to produce thin-walled components, understanding of mechanism behind fluidity as it is effected by casting parameters is very important. Similarly, for complex components study of solidification morphology and its effects on castability is important to understand. The aim of this work was to investigate casting of thin-walled test geometries (less than 2mm) in aero-space grades of alloys. The casting trials were performed to investigate the fluidity as a function of casting parameters and filling system in thin-walled sections. Test geometries with different thickness were cast and evaluated in terms of filled area with respect to casting parameters, ı.e. casting temperature and shell preheat temperature. Different feeding systems were investigated to evaluate effects of filling mode on castability. Similarly for complex components where geometries are very organic in shape, solidification morphology effects the quality of castings. Process parameters, that effect the solidification morphology were identified and evaluated. In order to develop a relation between defect formation and process parameters, solidification behaviour was investigated using simulations and casting trials. Similarly the effect of factors that influence grain structure and flow related defects were studied. It was observed that fluidity is affected by the mode of geometry filling in investment casting process. The filling mode also have different effect on defect formation. A top-gated configuration is strongly affected by casting parameters where as a bottom-gated configuration is more stable and thus fluidity is not significantly affected by variation in casting parameters. Less porosity and flow-related defects were observed in the bottom-gated system as compared to top-gated system. In the study about casting defects as affected by process parameters, it was observed that shell thickness is important to avoid interdendritic shrinkage. It was observed that the increased shell thickness induces a steeper thermal gradient which is essential in order to minimize the width of the mushy zone. It was also observed that a slower cooling rate along with a steeper thermal gradient at the metal-mould interface not only helps to avoid shrinkage porosity but also increases fill-ability in thinner sections. The work presented here is focused on the optimization of process parameters, in order, for instance, to improve castability and reduce the casting defects in investment casting process. The work, however, does not focus on externally influencing the casting conditions or modifying the casting/manufacturing process. The future work towards PhD will be focused on externally improving the casting conditions and investigating other possible route of manufacturing for thin, complex components.
|
378 |
Estudo da fundição em aluminetos de ferro. / Investigation on casting of iron aluminides.Ramirez, Bruna Niccoli 26 March 2019 (has links)
Aluminetos de ferro pertencem a uma classe de materiais interessantes por combinarem excelente resistência à oxidação com boas propriedades mecânicas em temperaturas moderadas a altas (até 500°C). Estes materiais, contudo, em temperatura ambiente, possuem baixa ductilidade (menos de 5% de alongamento à tração), característica correlacionada a efeitos ambientais, o que dificulta seu processo de conformação. A fundição é uma via de processamento tradicionalmente aplicada às ligas frágeis (por exemplo, ferro fundido cinzento), sendo necessário conhecer as propriedades termoquímicas da liga para que as peças fundidas sejam livres de defeitos atribuídos ao processo, como a formação de poros e rechupes. Neste trabalho foram investigadas três ligas distintas de intermetálicos, Fe28Al, Fe28Al6Cr e Fe28Al6Cr1Ti, sob a influência de diferentes condições de solidificação. Para estas três composições de liga, observou-se a redução do tamanho de grão em até 60% pela adição de Al-5Ti-1B como inoculante ao metal fundido. As ligas foram produzidas em condições laboratorias (forno de indução com capacidade máxima de 2 kg e proteção sob fluxo de Ar), bem como em escala industrial (forno de indução com capacidade de 100 kg). O processo em escala industrial resultou em peças de fundição com pequena quantidade de defeitos, sendo este um indicativo da capacidade de produzir peças destes aluminetos de ferro diretamente pelo processo de fundição. A técnica de tomografia de raios X auxiliou na mensuração da contração linear (~6%) e tendência à formação de defeitos. Além da caracterização microestrutural das ligas produzidas, este trabalho, ao relatar processo de fundição em escala industrial, inclui uma discussão sobre a reatividade do metal fundido e o material refratário que reveste o forno de indução. Dessa forma, os dados obtidos permitem averiguar a fundibilidade de ligas da família FeAl pelo uso de forno de indução. / Iron aluminides are good candidates for applications at moderate to high temperatures (up to 500 °C) because they combine excellent oxidation resistance with good mechanical properties. However, these materials have low ductility at room temperature (less than 5% traction elongation), a characteristic correlated to environmental effects, which hinders their conformation process. Casting is a processing route traditionally applied to brittle alloys (eg, gray cast iron), it is necessary to know the thermochemical properties of the alloys to reduce the formation of defects attributed to the casting process, such as the formation of pores, scar and blows. In this work, three different alloys of intermetallic (Fe28Al, Fe28Al6Cr and Fe28Al6Cr1Ti) were investigated under the influence of different solidification conditions. For these three alloy compositions, grain size reduction by up to 60% was observed by the addition of Al-5Ti-1B as an inoculant to the molten metal. The alloys were produced under laboratory conditions (induction furnace with a maximum capacity of 2 kg and protection under Air flow), as well as industrial scale (induction furnace with capacity of 100 kg). The industrial scale process resulted in castings with a small number of defects, which is an indication of the ability to produce mechanical parts of these iron aluminides directly by the casting process. The X-ray tomography technique assisted in the measurement of linear contraction (~ 6%) and tendency to defect formation. In addition to the microstructural characterization of the alloys, this work includes a discussion about the reactivity of the molten metal and the refractory material coating the induction furnace. In this way, the obtained data allow to investigate the FeAl alloys castability by the use of induction furnace.
|
379 |
Development of Fluidity Measurement Technique and Automation of Measurement Station : Developing the existing Fluidity Measurement Station by automating the operation and measuring the fluidity digitally with MATLAB Image Processing Tools. / Utveckling av Fluiditsmätningsteknik och Automatisering av MätstationUllal, Pratheek January 2019 (has links)
Bryne AB has invented a device called Loop for measuring the fluidity of molten metal. Loop is made up of refractory fiber material and has a dimension of 196 sq.mm within which there is an engraved spiral shaped runway for the molten metal to flow. The distance traveled by the molten metal in the spiral determines its fluidity and is measured visually by the operator with the help of the spiral scale printed on the Loop. A workstation is used to support the Loop for an easier and better working environment. At present, the entire operation of fluidity measurement is done manually. The aim of the thesis is to develop an automatic workstation for the fluidity measurement and find a technique to measure the fluidity without human visual aid. Further, an attempt has been made to find a way to store and retrieve the measured values for future use. The automation of the workstation is done with the help of Arduino Uno circuit board for electrical connections and Arduino IDE for programming the circuit. MATLAB image processing tool is used for measuring the fluidity digitally. The prototype of the automated workstation is built and showcases the ability to reduce the time and operational errors. The automation of the unplugging operation saves up to 7 seconds. The digital measuring of the fluidity with FLIR thermal camera and MATLAB image processing tool does not show significant improvement in accuracy in measurement, but it reduces the dependency on the expertise of the operator. There is an error of 12.7% from the actual fluidity value.
|
380 |
Design optimization for obtaining zero defects in steel castingPurkar, Pranit Pramod January 2019 (has links)
This thesis is about the design of the gating system and selection of proper alloy for defects free (grate bar) casting. The gating system plays an important role in casting manufacturing process. The gating system has different elements like pouring cup, sprue, well, runner, riser, and ingates. The function of the gating system is to provide molten metal to the mould cavity through different gating system elements. Casting is a metal shaping process which is used to produce a cast component. The casting process depends upon the material, type of pattern, mould and various techniques like sand casting, investment casting, die casting, squeeze casting and lost foam casting. The sand mould casting process is used in this report. The casting process is used for making small to large cast parts, complicated shapes, and precision parts, etc. Making a casting without defects is an important requirement for its strength. The effective and efficient design of the gating system is necessary for making defects free castings. There are various defects like shrinkage cavity, porosity, pinholes, blowholes and incomplete filling that may occur in sand casting. The simulation software like Magma Soft and Nova Flow Solid are used to predict the possible defects in the casting. The uses of the simulation improve product quality and increase productivity. It also helps to reduce the rejection rate by identifying and controlling defects. This work is done at AB Bruzaholms Bruk as part of master thesis work at Jönköping University, Sweden. The company provides all the necessary data for simulation purposes. The design of the gating system is finalized as per company requirements and needs. The research questions that have been answered in this report based on the following points. 1) What does zero-defect mean? 2) Which is the best design among the ones that are prepared and simulated? 3) Which is the best alloy combination for casting parts that give defects free casting and better fluidity and filling?
|
Page generated in 0.0945 seconds