Spelling suggestions: "subject:"catalyseurs alcalina"" "subject:"catalyseurs alcaline""
1 |
Etude de procédés de conversion de biomasse en eau supercritique pour l'obtention d'hydrogène. : Application au glucose, glycérol et bio-glycérol / Study of biomass conversion in supercritical water processes to produce hydrogen. : Application to glucose, glycerol and bio-glycerolWu Yu, Qian Michelle 31 January 2012 (has links)
Des nouveaux procédés éco-efficients basés sur une meilleure utilisation des ressources renouvelables sont nécessaires pour assurer la continuité du développement énergétique. La thèse étudie le procédé de gazéification en eau supercritique (T>374°C et P>22,1 MPa) de la biomasse très humide pour l’obtention de l’hydrogène, molécule ayant un potentiel énergétique très intéressant à valoriser avec un impact environnemental très favorable. L’étude porte sur l’application du procédé à la biomasse modèle (solutions de glucose, glycérol et leur mélange) ainsi qu’au bioglycérol, résidu de la fabrication du biodiesel. Les propriétés du solvant et les mécanismes prépondérants développés par l’eau en phase souset supercritique peuvent être contrôlés par les paramètres opératoires imposés au processus : température, pression, concentration en molécules organiques et catalyseur alcalin, temps de réaction... Les études paramétriques des systèmes réactionnels ont été menées dans des réacteurs batch à deux échelles différentes, les phases résultantes étant caractérisées par des protocoles analytiques élaborés et validés dans le cadre de l’étude. Le suivi du milieu réactionnel en batch lors de son déplacement vers l’état supercritique a mis en évidence une conversion avancée des molécules organiques et une identification de certains intermédiaires générés. Parmi les paramètres étudiés, la température et le temps de réaction influent le plus le rendement à l’obtention d’hydrogène en présence de catalyseur (K2CO3) dans les réacteurs batch, rendements de 1,5 et 2 mol d’H2 respectivement par mol de glycérol et de glucose introduites. Les gaz obtenus contiennent des proportions variables d’hydrocarbures légers et du CO2. Environ 75% du carbone est converti en phase gaz et liquide (sous forme de carbone organique et inorganique), le restant étant déposé sous forme solide ou huileuse. L’analyse du solide généré (plus de 90% de C) laisse apparaître différentes phases, y compris la formation de nanoparticules sphériques. Enfin, la gazéification en réacteur continu du glycérol préchauffé a montré de meilleurs rendements en hydrogène que le procédé batch, pendant que celle du bioglycérol demande une évolution du procédé à cause de la précipitation en phase supercritique des sels contenus dans le réactant. En conclusion, la gazéification en eau supercritique de la biomasse peut être considérée comme une alternative intéressante à d’autres procédés physico-chimiques de production de l’hydrogène. L’amélioration du procédé sera possible par son intensification menée en parallèle avec l’utilisation de matériaux plus performants et le contrôle de la salinité de la phase réactante. / Supercritical water (T > 374 ° C and P > 22.1 MPa) gasification of wet biomass for hydrogen production is investigated. This process converts a renewable resource into a gas, which is mainly composed of hydrogen and hydrocarbons with interesting energy potential, and which can be separated at high pressure. In addition, the greenhouse gas effect of the process is zero or negative. Model biomasses (glucose, glycerol and their mixture) and bio-glycerol, residue from bio-diesel production, have been gasified by different processes: two-scale batch reactors (5 mL and 500 mL) and a continuous gasification system. Supercritical water acts as a reactive solvent, its properties can be adjusted by the choice of the experimental (P, T) couple. The operating parameters, e.g. temperature, pressure, concentration of biomass and alkaline catalysts, reaction time… allow favoring certain reaction mechanisms. In order to characterize the processes, specific analytical protocols have been developed and validated. The intermediates, formed during the heating time in the batch reactors, have been identified. Among the investigated operating parameters, temperature and reaction time have the greatest influence on the hydrogen production in batch reactors. In the presence of catalyst (K2CO3), H2 yields of 1.5 mol/mol glucose and 2 mol/mol glycerol have been respectively observed. The obtained gas contains different proportions of light hydrocarbons and CO2. About 75% of the carbon is converted into gas and liquid (in form of organic and inorganic carbon). The conversion leads also to a solid or oily residue. In the generated solid phase (composed over 90% of C), spherical nanoparticles are observed via electronic microscopy. The hydrogen production from glycerol is improved in the continuous process compared to batch reactors, however, bio-glycerol supercritical water gasification requests process improvement due to the precipitation of the salt contained in the reactant. In conclusion, supercritical water gasification of biomass can be considered as an promising alternative process for hydrogen production. The process should be improved by more performing equipments and by the control of the salinity content of the crude biomass.
|
2 |
Étude de procédés de conversion de biomasse en eau supercritique pour l'obtention d'hydrogène. Application au glucose, glycérol et bio-glycérolYu-Wu, Qian Michelle 31 January 2012 (has links) (PDF)
Des nouveaux procédés éco-efficients basés sur une meilleure utilisation des ressources renouvelables sont nécessaires pour assurer la continuité du développement énergétique. La thèse étudie le procédé de gazéification en eau supercritique (T>374°C et P>22,1 MPa) de la biomasse très humide pour l'obtention de l'hydrogène, molécule ayant un potentiel énergétique très intéressant à valoriser avec un impact environnemental très favorable. L'étude porte sur l'application du procédé à la biomasse modèle (solutions de glucose, glycérol et leur mélange) ainsi qu'au bioglycérol, résidu de la fabrication du biodiesel. Les propriétés du solvant et les mécanismes prépondérants développés par l'eau en phase sous- et supercritique peuvent être contrôlés par les paramètres opératoires imposés au processus : température, pression, concentration en molécules organiques et catalyseur alcalin, temps de réaction... Les études paramétriques des systèmes réactionnels ont été menées dans des réacteurs batch à deux échelles différentes, les phases résultantes étant caractérisées par des protocoles analytiques élaborés et validés dans le cadre de l'étude. Le suivi du milieu réactionnel en batch lors de son déplacement vers l'état supercritique a mis en évidence une conversion avancée des molécules organiques et une identification de certains intermédiaires générés. Parmi les paramètres étudiés, la température et le temps de réaction influent le plus le rendement à l'obtention d'hydrogène en présence de catalyseur (K2CO3) dans les réacteurs batch, rendements de 1,5 et 2 mol d'H2 respectivement par mol de glycérol et de glucose introduites. Les gaz obtenus contiennent des proportions variables d'hydrocarbures légers et du CO2. Environ 75% du carbone est converti en phase gaz et liquide (sous forme de carbone organique et inorganique), le restant étant déposé sous forme solide ou huileuse. L'analyse du solide généré (plus de 90% de C) laisse apparaître différentes phases, y compris la formation de nanoparticules sphériques. Enfin, la gazéification en réacteur continu du glycérol préchauffé a montré de meilleurs rendements en hydrogène que le procédé batch, pendant que celle du bioglycérol demande une évolution du procédé à cause de la précipitation en phase supercritique des sels contenus dans le réactant. En conclusion, la gazéification en eau supercritique de la biomasse peut être considérée comme une alternative intéressante à d'autres procédés physico-chimiques de production de l'hydrogène. L'amélioration du procédé sera possible par son intensification menée en parallèle avec l'utilisation de matériaux plus performants et le contrôle de la salinité de la phase réactante.
|
Page generated in 0.0869 seconds