1 |
On the Aubry-Mather theory for partial differential equations and the stability of stochastically forced ordinary differential equationsBlass, Timothy James 01 June 2011 (has links)
This dissertation is organized into four chapters: an introduction followed by three chapters, each based on one of three separate papers. In Chapter 2 we consider gradient descent equations for energy functionals of the type [mathematical equation] where A is a second-order uniformly elliptic operator with smooth coefficients. We consider the gradient descent equation for S, where the gradient is an element of the Sobolev space H[superscipt beta], [beta is an element of](0, 1), with a metric that depends on A and a positive number [gamma] > sup |V₂₂|. The main result of Chapter 2 is a weak comparison principle for such a gradient flow. We extend our methods to the case where A is a fractional power of an elliptic operator, and we provide an application to the Aubry-Mather theory for partial differential equations and pseudo-differential equations by finding plane-like minimizers of the energy functional. In Chapter 3 we investigate the differentiability of the minimal average energy associated to the functionals [mathematical equation] using numerical and perturbation methods. We use the Sobolev gradient descent method as a numerical tool to compute solutions of the Euler-Lagrange equations with some periodicity conditions; this is the cell problem in homogenization. We use these solutions to determine the minimal average energy as a function of the slope. We also obtain a representation of the solutions to the Euler-Lagrange equations as a Lindstedt series in the perturbation parameter [epsilon], and use this to confirm our numerical results. Additionally, we prove convergence of the Lindstedt series. In Chapter 4 we present a method for determining the stability of a class of stochastically forced ordinary differential equations, where the forcing term can be obtained by passing white noise through a filter of arbitrarily high degree. We use the Fokker-Planck equation to write a partial differential equation for the second moments, which we turn into an eigenvalue problem for a second-order differential operator. We develop ladder operators to determine analytic expressions for the eigenvalues and eigenfunctions of this differential operator, and thus determine the stability. / text
|
2 |
Homogenization of a higher gradient heat equation: Numerical solution of the cell problem using quadratic B--spline based finite elementsDumbuya, Samba January 2023 (has links)
This study focuses on the numerical solution of a fourth-order cell problem obtained through a two- scale expansion approach applied to a higher gradient heat equation microscopic problem involving temperature distributions. The main objective is to investigate the temperature field within the macroscale domain and compute the effective conductivity using finite element methods. The research utilizes numerical techniques, specifically finite element methods, to solve the fourth-order cell problem and obtain the temperature distribution.
|
Page generated in 0.0576 seconds