• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 243
  • 31
  • 21
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 667
  • 667
  • 249
  • 213
  • 166
  • 106
  • 87
  • 68
  • 57
  • 56
  • 53
  • 51
  • 49
  • 46
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

The Effect of hsa-miR-105 on Prostate Cancer Growth

Honeywell, David R 07 December 2012 (has links)
Micro (mi)RNAs have recently been found to play an important role in cancer biology. In order to further understand how miRNAs affect prostate tumour progression, we evaluated miRNA expression in two invasive prostate tumour lines, PC3 and DU145. We then focused our evaluation on a novel miRNA, miR-105, whose levels were significantly decreased in both tumour cell lines as compared to normal prostate epithelial cells. As miR-105 levels were reduced in prostate tumour cell lines, we restored its expression following transfection of cells with mimic constructs to over-express miR-105 in both cell lines, in order to determine its effect on various tumourigenic properties. Over-expression caused decreased tumour cell proliferation, anchorage-independent growth and invasion in vitro and inhibited tumour growth in vivo. We further identified CDK6 as a putative target of miR-105, which likely contributed to its inhibition of tumour cell growth. Our results suggest that miR-105 inhibits tumour cell proliferation and may be an interesting target to regulate tumour growth or potentially used as a biomarker to differentiate between less and more aggressive tumours in patients.
572

Investigations on the in vitro effects of aqueous Eurycoma longifolia Jack extract on male reproductive functions

Erasmus, Nicolete January 2012 (has links)
<p>Eurycoma longifolia (Tongkat Ali / TA) is a Malaysian shrub used to treat various illnesses including male infertility. Considering that TA is also used to improve male fertility and no report&nbsp / regarding its safety has been published, this study investigated the effects of a patented, aqueous TA extract on various sperm and testicular functions. Materials and Methods This study&nbsp / encompasses two parts (part 1: on spermatozoa / part 2: on TM3-Leydig and TM4-Sertoli cells). Part 1: Semen samples of 27 patients and 13 fertile donors were divided into two groups,&nbsp / washed and swim-up prepared spermatozoa, and incubated with different concentrations of TA (1, 10, 20, 100, 2000 &mu / g/ml) for 1 hour at 37&deg / C. A sample without addition of TA served as control. After incubation with TA,&nbsp / the following parameters were evaluated: viability (Eosin-Nigrosin test), total and progressive motility (CASA), acrosome reaction (triple stain technique), sperm production of reactive oxygen&nbsp / species (ROS / dihydroethidium test / DHE), sperm DNA fragmentation (TUNEL assay) and mitochondrial membrane potential (&Delta / &psi / m) (Depsipher kit). Part 2: TM3-Leydig and TM4-Sertoli cells&nbsp / incubated with different concentrations of TA (0.4, 0.8, 1.6, 3.125, 6.25, 12.5, 25, 50 &mu / g/ml) and control (without extract) for 48 and 96 hours. After incubation with TA, the following parameters were&nbsp / evaluated: viability (XTT), cell proliferation (protein assay), testosterone (testosterone ELISA test) and pyruvate (pyruvate assay). Results Part 1: For washed spermatozoa, significant&nbsp / dose-dependent trends were found&nbsp / for viability, total motility, acrosome reaction and sperm ROS production. However, these trends were only significant if the highest concentrations were included in the calculation. In the swim-up spermatozoa, ROS production of spermatozoa showed a biphasic relationship with its lowest percentage at 10 &mu / g/ml, yet, no significance could be&nbsp / observed (P=0.9505). No influence of TA could be observed for sperm DNA fragmentation nor &Delta / &psi / m.</p>
573

Organ and primary culture of medaka (Oryzias latipes) testis: Test systems for the analysis of cell proliferation and differentiation / Organ und Primärzellkultur von Medaka Testis: Test Systeme zur Untersuchung des Zellproliferation und Zelldifferenzierung

Song, Miyeoun 22 June 2003 (has links) (PDF)
In cultured medaka testis fragments, cells remained viable for the entire culture period (17h), and spermatids that developed from spermatocytes were viable and motile. Primary cultures were characterized over a period of two days with respect to cell viability and the distribution of adherent and suspended cells. These two cell populations were maintained in dynamic equilibrium in vitro for several days. Proliferating cells were predominant among clusters of suspended cells, as determined by BrdU labeling, and CFSE and propidium iodide PI labeling. Based on cytological criteria, the proliferating cells were mostly spermatogonia and possibly also preleptotene spermatocytes. Differentiation of spermatocytes into spermatids or spermatozoa was also observed, mainly among the suspended cells. These results suggest that the organ and primary culture systems are suitable systems for studying the effects of substances that interfere with spermatogenesis in the medaka, a model vertebrate. The organ and primary culture systems were used to analyze the effects of a synthetic estrogen, EE2, on cell proliferation in medaka testis. Both organ and primary culture were suitable for this purpose consistently small concentrations (0.01 and 1 nM) of EE2 stimulated cell proliferation slightly, while higher concentrations (100 nM) had an inhibitory effect. To investigate the effect of phytoestrogens on cell proliferation in spermatogenesis, selected flavonoids [genistein (1, 10, 100 µg/ml), quercetin (0.01, 1, 100 µM), and 8-prenylnarigenin (0.001, 0.1, 1, 10 µM)] were added to medaka testis primary cultures. Genistein and quercetin inhibited cell proliferation in the cultures while 8-prenylnarigenin had no effect. In a second series of experiments the addition of genistein (10 µg/ml) to primary cultures significantly inhibited both cell proliferation and cell differentiation as determined by flow cytometry using CFSE/PI labeling.
574

Influence of Degradable Polar Hydrophobic Ionic Polyurethanes and Cyclic Mechanical Strain on Vascular Smooth Muscle Cell Function and Phenotype

Sharifpoor, Soror 11 January 2012 (has links)
Vascular tissue engineering (VTE) with the use of polymeric scaffolds offers the potential to generate small-diameter (<6 mm) arteries. In this thesis, a degradable polar hydrophobic ionic (D-PHI) polyurethane porous scaffold was synthesized with the objective of demonstrating its potential application for VTE. D-PHI scaffold synthesis was optimized, maximizing isocyanate and methacrylate monomer conversion. Through the incorporation of a lysine-based crosslinker, scaffold mechanical properties and swelling were manipulated. Furthermore, D-PHI scaffolds demonstrated the ability to support the growth and adhesion of A10 vascular smooth muscle cells (VSMCs) during two weeks of culture. This study also investigated the effect of a double porogen approach on D-PHI scaffold properties, demonstrating an increase in the total scaffold porosity and pore interconnectivity. Specifically, it was found that the use of 10 wt% polyethylene glycol and 65 wt% sodium bicarbonate porogens resulted in a porous (79±3%) D-PHI scaffold with the mechanical properties (elastic modulus=0.16±0.03 MPa, elongation-at-yield=31±5%, and tensile strength=0.04±0.01 MPa) required to withstand the physiologically-relevant cyclic mechanical strain (CMS) that is experienced by VSMCs in vivo. Furthermore, the effects of uniaxial CMS (10% strain, 1 Hz, 4 weeks) on human coronary artery smooth muscle cells (hCASMCs), which were cultured in a porous D-PHI scaffold, were studied using a customized bioreactor. Four weeks of CMS was shown to yield greater DNA mass, more cell area coverage, a better distribution of cells within the scaffold, the maintenance of contractile protein expression and the improvement of tensile mechanical properties. The in vitro and in vivo degradation as well as the in vivo biocompatibility of D-PHI scaffolds were also investigated. Following their subcutaneous implantation in rats (100 days), porous D-PHI scaffolds demonstrated more cell/tissue infiltration within their pores and degraded in a controlled manner and at a faster rate when compared to in vitro studies (120 days), retaining the mechanical integrity required during neo-tissue formation. This thesis provides significant insight into the role of the D-PHI scaffold in combination with physiologically-relevant CMS in modulating VSMC proliferation and phenotype. The findings of this work can be used to tailor vascular tissue regeneration by regulating VSMC function in a directed manner.
575

Influence of Degradable Polar Hydrophobic Ionic Polyurethanes and Cyclic Mechanical Strain on Vascular Smooth Muscle Cell Function and Phenotype

Sharifpoor, Soror 11 January 2012 (has links)
Vascular tissue engineering (VTE) with the use of polymeric scaffolds offers the potential to generate small-diameter (<6 mm) arteries. In this thesis, a degradable polar hydrophobic ionic (D-PHI) polyurethane porous scaffold was synthesized with the objective of demonstrating its potential application for VTE. D-PHI scaffold synthesis was optimized, maximizing isocyanate and methacrylate monomer conversion. Through the incorporation of a lysine-based crosslinker, scaffold mechanical properties and swelling were manipulated. Furthermore, D-PHI scaffolds demonstrated the ability to support the growth and adhesion of A10 vascular smooth muscle cells (VSMCs) during two weeks of culture. This study also investigated the effect of a double porogen approach on D-PHI scaffold properties, demonstrating an increase in the total scaffold porosity and pore interconnectivity. Specifically, it was found that the use of 10 wt% polyethylene glycol and 65 wt% sodium bicarbonate porogens resulted in a porous (79±3%) D-PHI scaffold with the mechanical properties (elastic modulus=0.16±0.03 MPa, elongation-at-yield=31±5%, and tensile strength=0.04±0.01 MPa) required to withstand the physiologically-relevant cyclic mechanical strain (CMS) that is experienced by VSMCs in vivo. Furthermore, the effects of uniaxial CMS (10% strain, 1 Hz, 4 weeks) on human coronary artery smooth muscle cells (hCASMCs), which were cultured in a porous D-PHI scaffold, were studied using a customized bioreactor. Four weeks of CMS was shown to yield greater DNA mass, more cell area coverage, a better distribution of cells within the scaffold, the maintenance of contractile protein expression and the improvement of tensile mechanical properties. The in vitro and in vivo degradation as well as the in vivo biocompatibility of D-PHI scaffolds were also investigated. Following their subcutaneous implantation in rats (100 days), porous D-PHI scaffolds demonstrated more cell/tissue infiltration within their pores and degraded in a controlled manner and at a faster rate when compared to in vitro studies (120 days), retaining the mechanical integrity required during neo-tissue formation. This thesis provides significant insight into the role of the D-PHI scaffold in combination with physiologically-relevant CMS in modulating VSMC proliferation and phenotype. The findings of this work can be used to tailor vascular tissue regeneration by regulating VSMC function in a directed manner.
576

Le rôle de la leptine dans le métabolisme anormal des ostéoblastes de patients atteints d’ostéoarthrose

Mutabaruka, Marie Solange 12 1900 (has links)
L’ostéoarthrose (OA) est une pathologie qui touche les articulations principalement chez les personnes âgées. Il devient capital de mieux cerner cette pathologie à cause des coûts économiques qu’elle engendre mais surtout à cause du vieillissement de la population. Cette maladie se caractérise par une dégradation du cartilage articulaire, une sclérose osseuse, une inflammation de la membrane synoviale ainsi que la présence d’ostéophytes. L’étiologie de cette pathologie est restée nébuleuse car la recherche sur la maladie touchait principalement le cartilage articulaire. Toutefois, le rôle clé de l’os sous-chondral dans l’OA est maintenant reconnu. L’obésité étant un facteur de risque de l’OA, nous avons émis l’hypothèse que la leptine, une adipocytokine clé dans l’obésité, joue un rôle important dans l’OA. En effet, la leptine modifie le phénotype des ostéoblastes (Ob) normaux humain et puisque les Ob OA humains ont un phénotype altéré, notre objectif était de déterminer le rôle potentiel de la leptine dans ces cellules. Pour ce faire, nous avons préparé des cultures primaires d’Ob issus de la plaque sous-chondral du plateau tibial de patients OA et d’individus normaux (N). L’expression de la leptine et de son récepteur actif (OB-Rb) ont été mesurées par RT-PCR en temps réel, et leur production a été mesurée par ELISA et immunobuvardage (IB). La prolifération des Ob OA a été déterminée par incorporation de BrdU. La phosphorylation de p42/44 MAPK dans les Ob OA a été déterminée par IB. Le phénotype des Ob fut déterminé par la mesure de l’activité de la phosphatase alcaline (ALP) et la sécrétion d’ostéocalcine (OC), en présence ou non de leptine. De plus, les effets des ARNs d’interférences (SiRNA) anti-leptine et anti OB-Rb sur le phénotype des Ob OA furent déterminés via leur impact sur l’activité de l’ALP et sur la sécrétion d’OC. L’effet dose-réponse de la leptine sur les expressions d’OB-Rb, du facteur de croissance TGF-1 ou encore sur sa propre expression furent déterminées par RT-PCR en temps réel. Pour terminer, la signalisation de la leptine a été étudiée en évaluant l’effet dose réponse de celle-ci sur la production des protéines JAK2 et STAT3 phosphorylées par IB. Les résultats obtenus ont montrés que les Ob OA expriment et produisent plus de leptine que les Ob N. Au niveau phénotypique, ces Ob OA possèdent une activité de l’ALP ainsi qu’une sécrétion d’OC plus importante que celles observées chez les Ob N. L’ajout d’anticorps inactivant l’interaction leptine et OB-Rb ou d’inhibiteurs chimiques comme tyrphostin ou piceatannol diminuèrent l’activité de l’ALP ainsi que la sécrétion d’OC dans les Ob OA. Par contre, l’ajout de leptine exogène aux Ob OA augmenta l’activité de l’ALP sans pour autant faire varier la sécrétion d’OC. La leptine à des doses de 1ng/ml à 10mg/ml stimula la prolifération des Ob OA ainsi que la phosphorylation de p42/44 MAPK. La leptine exogène diminua l’expression de TFG-1 tandis qu’elle stimula la phosphorylation de JAK2 et STAT3 ou encore sa propre expression de manière dose-dépendante. Cependant, l’expression d’OB-Rb diminua de manière dose-dépendante. Enfin, le traitement des Ob OA avec des Si leptine ou Si OB-Rb diminua l’activité d’ALP, la sécrétion d’OC, l’expression de la leptine, l’expression d’OB-RB ainsi que l’expression du facteur TGF-1. L’ensemble de ces données démontre que la leptine endogène des Ob OA est sous contrôle des facteurs de croissance et qu’elle contribue à maintenir le phénotype anormal de l’os sous-chondral OA. De plus, ceci suggère que la leptine serait un acteur important dans la régulation du remodelage osseux. / Osteoarthritis (OA) is a disease which mainly affects the joints in the elderly. It becomes essential to better understand this disease because of the economic costs it brings, but mainly because of population aging. This disease is characterized by a deterioration of cartilage, bone sclerosis, inflammation of the synovial membrane and the presence of osteophytes. The knowledge of its etiology has remained incomplete because research on this disease focused mainly on the articular cartilage. However, the key role of subchondral bone in OA is now recognized. Obesity is a risk factor for OA, then we hypothesized that leptin, a key adipocytokine in obesity plays an important role in OA. Indeed, leptin alters the phenotype of osteoblasts (Ob) and human Ob has altered phenotype in OA patients, our objective was to determine the potential role of leptin in OA Ob. To do this, we prepared primary cultures of Ob from the sub-chondral plate of the tibial plateaus of OA patients and normal individuals (N). The expression of leptin and its receptor active (OB-Rb) were measured by RT-PCR in real time, and their production was measured by ELISA and western blot (WB). The proliferation of Ob OA was determined by BrdU incorporation. The phosphorylation of p42/44 MAPK was evaluated by WB. The phenotype of Ob was determined by measuring the activity of alkaline phosphatase (ALP) and the secretion of osteocalcin (OC), in the presence or absence of leptin. Moreover, the effects of small interference RNAs (siRNAs) anti-leptin and anti OB-Rb on the phenotype of OA Ob were determined through their impact on the activity of the ALP and the secretion of OC. The dose-response effect of 1eptin on its own expression or the expressions of OB-Rb, the growth factor TGF-β1 were determined by RT-PCR in real time. Finally, signalisation of leptin in OA Ob was studied by evaluating the dose-response effect of this on the production of JAK2 and STAT3 protein phosphorylated by WB. The results showed that the OA Ob express and produce more leptin than N. Moreover, these Ob OA have an activity of the ALP and a secretion OC higher than those observed in N Ob. The addition of antibodies inactivating interaction leptin and OB-Rb or chemical inhibitors such as tyrphostin or piceatannol diminished the activity of the ALP and the secretion of OC in OA Ob against by the addition of exogenous leptin to Ob OA increased the activity of the ALP without influencing the secretion of OC. Leptin at doses of 1ng/ml to 10mg/mL stimulated the proliferation of OA Ob and the phosphorylation of p42/44 MAPK. Exogenous leptin decreased the expression of TGF-β1 while it stimulated the phosphorylation of JAK2 and STAT3 and expression of its own in dose-dependent manner. However, the expression of OB-Rb decreased in dose-dependent. Finally, the treatment of OA Ob with Si leptin or Si OB-Rb decreased activity of ALP, the secretion of OC, the leptin expression, expression of OB-Rb and the expression of TGF-β1 factor. All these data show that endogenous leptin Ob OA controls the growth factors and contributes to maintaining the abnormal phenotype of the subchondral bone OA. Moreover, this suggests that leptin is an important player in the regulation of bone remodelling
577

Investigations on the in vitro effects of aqueous Eurycoma longifolia Jack extract on male reproductive functions

Erasmus, Nicolete January 2012 (has links)
<p>Eurycoma longifolia (Tongkat Ali / TA) is a Malaysian shrub used to treat various illnesses including male infertility. Considering that TA is also used to improve male fertility and no report&nbsp / regarding its safety has been published, this study investigated the effects of a patented, aqueous TA extract on various sperm and testicular functions. Materials and Methods This study&nbsp / encompasses two parts (part 1: on spermatozoa / part 2: on TM3-Leydig and TM4-Sertoli cells). Part 1: Semen samples of 27 patients and 13 fertile donors were divided into two groups,&nbsp / washed and swim-up prepared spermatozoa, and incubated with different concentrations of TA (1, 10, 20, 100, 2000 &mu / g/ml) for 1 hour at 37&deg / C. A sample without addition of TA served as control. After incubation with TA,&nbsp / the following parameters were evaluated: viability (Eosin-Nigrosin test), total and progressive motility (CASA), acrosome reaction (triple stain technique), sperm production of reactive oxygen&nbsp / species (ROS / dihydroethidium test / DHE), sperm DNA fragmentation (TUNEL assay) and mitochondrial membrane potential (&Delta / &psi / m) (Depsipher kit). Part 2: TM3-Leydig and TM4-Sertoli cells&nbsp / incubated with different concentrations of TA (0.4, 0.8, 1.6, 3.125, 6.25, 12.5, 25, 50 &mu / g/ml) and control (without extract) for 48 and 96 hours. After incubation with TA, the following parameters were&nbsp / evaluated: viability (XTT), cell proliferation (protein assay), testosterone (testosterone ELISA test) and pyruvate (pyruvate assay). Results Part 1: For washed spermatozoa, significant&nbsp / dose-dependent trends were found&nbsp / for viability, total motility, acrosome reaction and sperm ROS production. However, these trends were only significant if the highest concentrations were included in the calculation. In the swim-up spermatozoa, ROS production of spermatozoa showed a biphasic relationship with its lowest percentage at 10 &mu / g/ml, yet, no significance could be&nbsp / observed (P=0.9505). No influence of TA could be observed for sperm DNA fragmentation nor &Delta / &psi / m.</p>
578

The Effect of hsa-miR-105 on Prostate Cancer Growth

Honeywell, David R 07 December 2012 (has links)
Micro (mi)RNAs have recently been found to play an important role in cancer biology. In order to further understand how miRNAs affect prostate tumour progression, we evaluated miRNA expression in two invasive prostate tumour lines, PC3 and DU145. We then focused our evaluation on a novel miRNA, miR-105, whose levels were significantly decreased in both tumour cell lines as compared to normal prostate epithelial cells. As miR-105 levels were reduced in prostate tumour cell lines, we restored its expression following transfection of cells with mimic constructs to over-express miR-105 in both cell lines, in order to determine its effect on various tumourigenic properties. Over-expression caused decreased tumour cell proliferation, anchorage-independent growth and invasion in vitro and inhibited tumour growth in vivo. We further identified CDK6 as a putative target of miR-105, which likely contributed to its inhibition of tumour cell growth. Our results suggest that miR-105 inhibits tumour cell proliferation and may be an interesting target to regulate tumour growth or potentially used as a biomarker to differentiate between less and more aggressive tumours in patients.
579

Mechanical and electrical environments to stimulate bone cell development

Hannay, Gwynne George January 2006 (has links)
Healthy bone is bombarded with many different mechanical strain derived signals during normal daily activities. One of these signals is present as a direct connective tissue strain on the cells. However, there is also the presence of an electrically charged streaming potential during this straining. The electrical potential is created from the movement of charged fluid through the small bone porosities. To date, little focus has been applied to elucidating the possible synergistic effects of these two stimulants. The aim of this project was to evaluate the effects of mechanical strain and indirect electrical stimulation upon the development of bone forming osteoblast cells and any possible synergistic effects of the two stimulants. This aim was achieved by using a novel device, designed and developed with the capability of creating a cell substrate surface strain along with an exogenous electrical stimulant individually or at the same time. Proliferation and differentiation were determined as a measure of cellular development. The indirect electrical stimulation was achieved through the use of a pulsed electromagnetic field (PEMF) while the mechanical strain was produced from dynamic stretching of a deformable cell substrate. Strain and strain rate were modelled from recent studies proposing that relatively high frequency, low strain osteogenic mechanical stimulants are more indicative of what healthy bone would be experiencing during normal activities. The PEMF signal mimicked a clinically available bone growth stimulator signal. Results showed a PEMF stimulus on monolayers of SaOS-2 and MG-63 osteoblast-like cells leads to a depression in proliferation. A concomitant increase in alkaline phosphatase production was also observed for the SaOS-2 cultures, but not for the MG-63 cell line. It was hypothesised that this was due to the MG-63's lack of phenotypic maturity compared to the SaOS-2 cells. Mechanical strain of the cell substrate alone, at a relatively high frequency (5Hz) but small strain, did not significantly effect either cell proliferation or differentiation for the MG-63 cells. However, when the electrical and mechanical stimulants were combined a significant increase in cellular differentiation occurred with MG-63 cultures, revealing a possible synergistic effect of these two stimulants on the development of bone cells.
580

The Plasma Membrane Calcium-ATPase in Mammary Gland Epithelial Cell Lines and Consequences of its Inhibition in a Model of Breast Cancer

Lee, Won Jae Unknown Date (has links)
Ionized calcium (Ca2+), acting as an intracellular messenger, controls numerous biological processes that are essential for life. However, it is also able to convey signals that result in cell death. The fidelity of Ca2+ as a universal second messenger therefore depends on mechanisms that specifically and dynamically regulate its levels within a cell, as well as maintain resting intracellular Ca2+ concentration ([Ca2+]i) very low. One such mechanism for Ca2+ signaling and homeostasis is the plasma membrane Ca2+-ATPase (PMCA), which is a primary active Ca2+ transporter that translocates Ca2+ from a low intracellular Ca2+ environment to a high extracellular environment. There are four mammalian PMCA isoforms (PMCA1-4), which are differentially expressed depending on tissue or cell type. PMCA isoforms possess different sensitivities to biochemical regulation of Ca2+ efflux activity and are also able to subtly alter the dynamics of Ca2+ signals. These properties suggest that the PMCA is not merely a trivial mechanism for Ca2+ extrusion but is influential in contributing to the Ca2+ signaling requirements and unique physiology of different cells. The indispensable nature of Ca2+ signaling in organs such as the brain, heart and skeletal muscle has been the studied extensively but little is known about the roles and regulation of Ca2+ in the mammary gland. This is despite the fact that the mammary gland is a site of extensive Ca2+ flux during lactation. However, cumulating evidence indicates that upregulation of PMCA2 expression in the mammary gland is a major mechanism for milk Ca2+ enrichment. Therefore, the PMCA is likely to be an important mediator of bulk Ca2+ homeostasis in the mammary gland. Studies in other model systems also suggest that PMCAs may regulate other cellular processes such as cell proliferation, differentiation and apoptosis that are required for normal mammary gland physiology. These basic cellular processes are also disturbed in breast cancer and hence deregulation of PMCA expression in the mammary gland may have pathophysiological consequences. Previous studies show that PMCA1 expression is greater in tumorigenic MCF-7 and MDA-MB-231 human breast cancer cells compared to non-tumorigenic MCF-10A human breast epithelial cells. Furthermore, the expression of PMCA1b and PMCA4b is lower in human skin and lung fibroblasts neoplastically transformed by simian virus 40, compared to non-transformed counterparts. It is therefore hypothesized that regulation of PMCA isoform expression is disrupted in breast cancer and that inhibition of PMCA expression in an in vitro model of breast cancer has important effects in modulating intracellular Ca2+ homeostasis, cell proliferation, differentiation and apoptosis. This thesis describes the use of real time RT-PCR to compare PMCA isoform mRNA expression in tumorigenic and non-tumorigenic mammary gland epithelial cells. It demonstrates that particular breast cancer cell lines overexpress PMCA2, an isoform with restricted tissue distribution and which is present in abundant amounts in the lactating rat mammary gland. Thus, some breast cancers may be characterized by the overexpression of Ca2+ transporters that are normally upregulated during the physiological course of lactation. The pathophysiological significance of PMCA2 overexpression in breast cancer is uncertain and future investigations should look at whether levels of PMCA isoform expression correlate with malignancy, prognosis or survival. To address the second hypothesis of this thesis, a stable MCF-7 Tet-off human breast cancer cell line able to conditionally express PMCA antisense was generated. This strategy was necessary due to the current lack of specific pharmacological inhibitors of the PMCA. This thesis shows that PMCA antisense expression significantly inhibits PMCA protein expression, while subtly affecting PMCA-mediated Ca2+ efflux without causing cell death. However, it also reveals that inhibition of PMCA expression has major effects in mediating cell proliferation and cell cycle progression. Moderate changes in PMCA expression and PMCA-mediated Ca2+ transport result in dramatic consequences in MCF-7 cell proliferation. These studies not only support the supposition that modulation of Ca2+ signaling is a viable therapeutic approach for breast cancer but also suggest that PMCAs are possible drug targets. Alternatively, inhibitors of the PMCA may act as adjuvants to augment the efficacy of other anti-neoplastic agents like tamoxifen that have been shown to modulate Ca2+ signaling. Since the discovery of a new family of primary active Ca2+ transporters, which are related to PMCAs, the opportunities in this field of research are very promising.

Page generated in 0.1411 seconds