Spelling suggestions: "subject:"central hardware""
1 |
HARDWOOD REGENERATION AND GROWTH FOLLOWING MULTIPLE SILVICULTURAL TREATMENTS IN A CENTRAL HARDWOOD FORESTInglis, Emily 01 May 2022 (has links)
The Central Hardwood Region (CHR) is experiencing a lack of desirable hardwood regeneration on productive sites across the landscape. To better understand what facilitates desirable hardwood regeneration, additional studies that test the interaction of multiple disturbances are needed. For this reason, a demonstration area on the north end of Trail of Tears State Forest (Union County, Illinois) was established to compare hardwood regeneration response following four treatments: (1) burn only, (2) thin/burn, (3) harvest/thin/burn, and (4) control. Treatments were implemented beginning in 2014 to determine what combination of silvicultural practices best promotes desirable hardwood regeneration among large saplings (>3.3’ in height and 1” DBH to 3” DBH), small saplings (>3.3’ in height and up to 1” DBH), and seedlings (1”- 3.3’ in height) and increases midstory Quercus alba radial growth (stems >3” DBH). Eighty plots were surveyed in the summer of 2021, and overstory, regeneration, and canopy openness data were collected. Midstory Q. alba individuals were cored to elucidate the relationship of radial growth and silvicultural treatments. There was no significant difference of Quercus spp. density among treatments for any regeneration size class. No silvicultural releases were detected in midstory Q. alba individuals since treatment application in 2014. These results indicate that either there had not been enough time since treatment application, or the management practices did not alter canopy openness enough to cause a radial growth increase. Given the absence of Quercus spp. regeneration and growth using the four treatments, I suggest managers should also consider other factors such as deer population densities, non-Quercus competition vigor, and forest floor light availability when attempting to regenerate productive forests in the CHR.
|
2 |
Succession of an Upland Oak/Hickory Forest in the Central Hardwood RegionHoover, Nathan 01 August 2018 (has links)
For the last 9,000-10,000 years the Central Hardwood Region (CHR) has been primarily composed of a mosaic of mesophytic communities in climax and communities of successional forest types dominated by oak (Quercus Linnaeus) and hickory (Carya Nuttall). Shade intolerant oak/hickory dominated forest types have been maintained by natural disturbance processes in synergy with anthropogenic causes, resulting in a large composition of communities which are neither at climatic nor edaphic climax. Reduction in fire events, thinning, forest grazing, and other disturbance processes over the last 80-100 years have coincided with decreased regeneration of shade intolerant species due to lack of adequate light availability and recruitment of shade tolerant species of communities dominated by American beech (Fagus grandifolia L.) and maple (Acer saccharum L.) into the overstory of forests typically dominated by oak/hickory. Forest inventory data at Trail of Tears State Forest was analyzed across two separate time events (1980 and 2014) to determine compositional and structural changes which have occurred. Density, basal area, and community patterns via ordination were compared across six Ecological Land Types (ELTs) to determine topography’s effect on composition. Community trends were analyzed via NMS Ordination and between ELTs by a Mantel Test. A Multi-Response Permutation Procedures (MRRP) was also used as a nonparametric method for assessing differences between ELTs examined in the NMS. Density and basal area between years for species, ELT, and species*ELT interactions were compared. Across all ELTs, between 1980 and 2014, overstory density decreased from 218 trees/ac in 1980 to 180 trees/ac in 2014 and basal area increased from 98 ft2/ac in 1980 to 106 ft2/ac in 2014. Maple basal area increased from 5 ft2/ac to 12 ft2/ac while beech increased from 1 ft2/ac to 8ft2/ac, signifying progression of these species from the understory up into the canopy. The component of soft masting species within the forest has also decreased sharply in the last 34 years. MRPP analysis of overstory compositional gradients reported distinct species compositions between ELTs, however the trend was weak (MRPP: p < 0.001, A = 0.038). NMDS ordination graphs confirmed MRPP showing little separation among ELTs. The final stress was 18.71146 and instability was < 0.01 after 212 iterations (Table 6). Our research at TTSF is a clear example of oak/hickory succession to beech maple on an upland site among species community types as delineated by topographic moisture gradient (ELTs) within the CHR. Expansion of beech and maple onto xeric ELTs suggests a breakdown of edaphic barriers that have previously been thought to be resistant to encroachment from mesophytic species. Currently oak decline induced by lack of management is likely the number one forest health issue resulting in loss of oak/hickory and other soft masting species.
|
3 |
Ecosystem dynamics in Central Appalachian riparian forests affected by hemlock woolly adelgidMartin, Katherine L. 22 June 2012 (has links)
No description available.
|
4 |
Thousand Cankers Disease of Eastern Black Walnut: Ecological Interactions in the Holobiont of a Bark Beetle-Fungal DiseaseGeoffrey M Williams (11186766) 27 July 2021 (has links)
<p>Eastern black walnut (<i>Juglans
nigra</i> L.) ranks among the most highly valued timber species in the central
hardwood forest and across the world. This valuable tree fills a critical role
in native ecosystems as a mast bearing pioneer on mesic sites. Along with other
<i>Juglans</i> spp. (Juglandaceae), <i>J. nigra</i> is threatened by thousand
cankers disease (TCD), an insect-vectored disease first described in 2009. TCD
is caused by the bark beetle <i>Pityophthorus
juglandis</i> Blackman (Corthylini) and the phytopathogenic fungus <i>Geosmithia morbida</i> Kol. Free. Ut. &
Tiss. (Bionectriaceae). Together, the <i>P.
juglandis</i>-<i>G. morbida</i> complex has
expanded from its historical range in southwest North America throughout the
western United States (U.S.) and Europe. This range expansion has led to
widespread mortality among naïve hosts <i>J.
nigra</i> and <i>J. regia</i> planted
outside their native distributions.</p>
<p> The severity
of TCD was previously observed to be highest in urban and plantation
environments and outside of the host native range. Therefore, the objective of
this work was to provide information on biotic and abiotic environmental
factors that influence the severity and impact of TCD across the native and
non-native range of <i>J. nigra</i> and
across different climatic and management regimes. This knowledge would enable a
better assessment of the risk posed by TCD and a basis for developing
management activities that impart resilience to natural systems. Through a
series of greenhouse-, laboratory- and field-based experiments, environmental
factors that affect the pathogenicity and/or survival of <i>G. morbida</i> in <i>J. nigra</i>
were identified, with a focus on the microbiome, climate, and opportunistic
pathogens. A number of potentially important interactions among host, vector,
pathogen and the rest of the holobiont of TCD were characterized. The <i>holobiont</i> is defined as the whole
multitrophic community of organisms—including <i>J. nigra</i>, microinvertebrates, fungi and bacteria—that interact with
one another and with the host.</p>
<p>Our findings indicate that
interactions among host, vector, pathogen, secondary pathogens, novel microbial
communities, and novel abiotic environments modulate the severity of TCD in
native, non-native, and managed and unmanaged contexts. Prevailing climatic
conditions favor reproduction and spread of <i>G.
morbida</i> in the western United States due to the effect of wood moisture
content on fungal competition. The microbiome of soils, roots, and stems of
trees and seedlings grown outside the host native range harbor distinct,
lower-diversity communities of bacteria and fungi compared to the native range,
including different communities of beneficial or pathogenic functional groups
of fungi. The pathogen <i>G. morbida</i> was
also associated with a distinct community of microbes in stems compared to <i>G. morbida</i>-negative trees. The soil
microbiome from intensively-managed plantations facilitated positive feedback
between <i>G. morbida</i> and a
disease-promomting endophytic <i>Fusarium
solani</i> species complex sp. in roots of <i>J.
nigra</i> seedlings. Finally, the nematode species <i>Bursaphelenchus juglandis</i> associated with <i>P. juglandis</i> synergizes with <i>G.
morbida</i> to cause foliar symptoms in seedlings in a shadehouse; conversely,
experiments and observations indicated that the nematode species <i>Panagrolaimus</i> sp. and cf. <i>Ektaphelenchus</i> sp. could suppress WTB
populations and/or TCD outbreaks.</p>
<p>In conclusion, the composition,
function, and interactions within the <i>P.
juglandis</i> and <i>J. nigra</i> holobiont play
important roles in the TCD pathosystem. Managers and conservationists should be
aware that novel associations outside the host native range, or in monocultures,
intensive nursery production, and urban and low-humidity environments may favor
progression of the disease through the effects of associated phytobiomes,
nematodes, and climatic conditions on disease etiology. Trees in higher
diversity, less intensively managed growing environments within their native
range may be more resilient to disease. Moreover, expatriated, susceptible host
species (<i>i.e.</i>, <i>J. nigra</i>) growing in environments that are favorable to novel pests
or pest complexes (<i>i.e.</i>, the western
U.S.) may provide connectivity between emergent forest health threats (<i>i.e.</i>, TCD) and native host populations (<i>i.e.</i>, <i>J. nigra</i> in its native range).</p>
|
Page generated in 0.0635 seconds