• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measuring the efficiency of two stage network processes: a satisficing DEA approach

Mehdizadeh, S., Amirteimoori, A., Vincent, Charles, Behzadi, M.H., Kordrostami, S. 2020 March 1924 (has links)
No / Regular Network Data Envelopment Analysis (NDEA) models deal with evaluating the performance of a set of decision-making units (DMUs) with a two-stage construction in the context of a deterministic data set. In the real world, however, observations may display a stochastic behavior. To the best of our knowledge, despite the existing research done with different data types, studies on two-stage processes with stochastic data are still very limited. This paper proposes a two-stage network DEA model with stochastic data. The stochastic two-stage network DEA model is formulated based on the satisficing DEA models of chance-constrained programming and the leader-follower concepts. According to the probability distribution properties and under the assumption of the single random factor of the data, the probabilistic form of the model is transformed into its equivalent deterministic linear programming model. In addition, the relationship between the two stages as the leader and the follower, respectively, at different confidence levels and under different aspiration levels, is discussed. The proposed model is further applied to a real case concerning 16 commercial banks in China in order to confirm the applicability of the proposed approach at different confidence levels and under different aspiration levels.

Page generated in 0.1181 seconds