• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantitative seismic geomorphology of a confined channel complex, southern Atwater fold belt, Gulf of Mexico, U.S.A.

Morgan, Jessica Leanne 02 November 2011 (has links)
The structures along the Atwater Fold belt form important deep-water hydrocarbon traps in the northern Gulf of Mexico. The purpose of this study is to map and quantify the morphology, sedimentology and architecture of Plio-Pleistocene basin floor fan systems outboard of the Poseidon Minibasin, located along the Atwater deep-water fold belt (mid-Miocene to Pliocene), and apply that information to determine the temporal and spatial nature of the fill and its implications as a reservoir analog. The data set includes ~2200 km sq. of 3D seismic data, along with information from several wells. Wireline logs show the Tertiary age deposits outboard of the Sigsbee Escarpment to be several hundred feet thick, sharp-based, dominantly coarse-grained (sandy) but fining up cycles composed of sandy basin floor fans, mass transport complexes and leveed channels developed in a confined setting within deep-water “valleys.” The largest valley formed in five main stages: initiating from narrow channel incision, widening through lateral incision and sidewall slumping, straightening, and finally flooding and infilling. The valley system is ~20,000 feet across and ~ 1,400 feet deep, with what look like well-developed levees ranging from 700 to 1300 feet at their thickest point extending ~19000 feet away from the channel. This system is underlain by a ~700 foot thick mass transport complex and overlain by younger, low sinuosity leveed channel systems. Both of these systems appear to have been sourced by large submarine drainages, originating from a shelf edge sediment source system to feed the rugose slope with deep-water channel pathways uninhibited by salt wall inflation at the time of valley deposition. Major phases of salt thrusting along the southern edge of the Atwater were contemporaneous with the formation of these large, through-going valley system, which appear to be associated with the period of sheet thickening and development of monoclinal basinward dip related to rafted mini-basin docking. Well log signatures show evidence for armored clay drapes along the valley margins as well as a flattening of lateral accretion packages toward the distal end of the system. The flattening of these packages seems to signal proximity to the fan terminus, which would serve as an important indicator of spatial extent of plays in deep-water. / text

Page generated in 0.0651 seconds