101 |
DSTYK Promotes Metastasis and Chemoresistance via EMT in Colorectal CancerZhang, Jinyu, Miller, Zachary, Musich, Phillip R., Thomas, Ashlin E., Yao, Zhi Q., Xie, Qian, Howe, Philip H., Jiang, Yong 02 September 2020 (has links)
Objective: Tumor metastasis and resistance to chemotherapy are two critical factors that contribute to the high death rate of colorectal cancer (CRC) patients. Metastasis is facilitated by the epithelial-mesenchymal transition (EMT) of tumor cells, which has emerged not only as a fundamental process during metastasis, but is also a key process leading to chemoresistance of cancer cells. However, the underlying mechanisms of EMT in CRC cell remain unknown. Here, we aim to assess the role of dual serine/threonine and tyrosine protein kinase (DSTYK) in CRC metastasis and chemoresistance. Methods: To study the role of DSTYK in TGF-β-induced EMT, we employed techniques including Crispr/Cas9 knockout (KO) to generate DSTYK KO cell lines, RT-PCR to detect the mRNA expression, immunofluorescence analyses, and western blots to detect protein levels of DSTYK in the following 4 cell lines: control LS411N-TβRII and LS411N-TβRII/DSTYK KO, control LS513 and LS513/DSTYK KO cells, treated with/without TGF-β. The effects of DSTYK on apoptosis were investigated by MTT assays, flow cytometry assays, and TUNEL assays. The expression of DSTYK in CRC patients and its correlation with EMT markers were determined by bioinformatics analysis. For in vivo analysis, both xenograft and orthotopic tumor mouse models were employed to investigate the function of DSTYK in chemoresistance and metastasis of tumors. Results: In this study, we demonstrate that the novel kinase DSTYK promotes both TGF-β-induced EMT and the subsequent chemoresistance in CRC cells. DSTYK KO significantly attenuates TGF-β–induced EMT and chemoresistance in CRC cells. According to the Gene Expression Omnibus (GEO) database, the expression of DSTYK is not only positively correlated to the expression of TGF-β, but proportional to the death rate of CRC patients as well. Evidently, the expression of DSTYK in the metastatic colorectal cancer samples from patients was significantly higher than that of primary colorectal cancer samples. Further, we demonstrate in mouse models that chemotherapeutic drug treatment suppresses the growth of DSTYK KO tumors more effectively than control tumors. Conclusion: Our findings identify DSTYK as a novel protein kinase in regulating TGF-β–mediated EMT and chemoresistance in CRC cells, which defines DSTYK as a potential therapeutic target for CRC therapy.
|
102 |
Studium vlivu DNA reparačních drah na odpověď na chemoterapeutickou léčbu u karcinomu vaječníků / The role of DNA repair pathways in ovarian cancer therapy responseVallušová, Dominika January 2021 (has links)
Ovarian cancer is serious and one of the most common gynecologic cancers. Carboplatin is the therapeutic agent of the first choice in the ovarian cancer therapy. However, after the primary therapeutic response to carboplatin, the relapse of the disease may occur with developed resistance to carboplatin. Chemoresistance and insufficient therapy response are considered to be the reason of the high mortality rate of ovarian cancer. The DNA damage response pathways play an important role in the therapeutic response and chemoresistance development. Restoration of homologous recombination function in cancers is the key mechanism of resistance development to platinum agents. Based on this knowledge, we formed our hypothesis, that the inhibition of homologous recombination could increase the sensibility to carboplatin. The main goal of this thesis was to define the role of double-strand breaks repair in response to chemotherapy of ovarian cancer. Protein MRE11 is part of the MRN complex, that participates in double-strand breaks repair. Using mirin as a pharmaceutic inhibitor of MRE11 we were aiming to determine the impact of homologous recombination on the effect of carboplatin and its role in resistant development to carboplatin. In the practical part of the thesis, we described the association between...
|
103 |
Mechanismy fenotypové plasticity nádorových buněk indukované genotoxickým stresem / Mechanisms of phenotypic plasticity induced by genotoxic stressPřibyl, Miroslav January 2021 (has links)
Therapy resistance of malignant cells represents the main reason responsible for the failure of cancer therapy. The growth of malignant cells at primary tumour sites but most importantly the dissemination of tumour cells and their growth at secondary sites, are the main reasons why patients eventually succumb to the disease. Even novel immune-based therapies find their limitation in most tumour types. The therapy resistance is mediated by the tumour cells but also by other cellular components of the tumour microenvironment. Understanding the tumour cells mechanisms and the tumour microenvironment features responsible for therapy resistance enables the development of novel therapeutic strategies. Here, we show that ionizing irradiation, 5-azacytidine, and IFNγ treatments induced expression of suprabasin (SBSN) and therapy-resistant low-adherent phenotype in cancer cells. Knockdown of SBSN resulted in suppression of the phenotype. Next, we identified aberrantly elevated SBSN in the bone marrow of a subgroup of myelodysplastic syndromes (MDS) patients. SBSN was expressed by myeloid-derived suppressor cells (MDSCs) and showed significant anti-correlation with T cell abundance and CCL2 levels, hence promises a prognostic value in clinical use. We compiled the most of the relevant knowledge of SBSN...
|
104 |
Genetic Diversity and Treatment Resistance in Prostate Cancer Cell LinesDonix, Lukas 05 June 2023 (has links)
Die Dissertationsarbeit untersucht genetische Varianten in Zellkulturmodellen des metastatischen und kastrationsresistenten Prostatakarzinoms. Außerdem werden Mechanismen der Chemoresistenz, insbesondere der Resistenz gegen Cisplatin und Docetaxel in diesen Zelllinien untersucht. / This Dissertation evaluates genetic variants found in cell culture models of metastatic castration resistant prostate cancer. Furthermore, mechanisms of resistance against the chemotherapeutic drugs cisplatin and docetaxel are investigated in these cell lines.
|
105 |
Genetic and epigenetic mechanisms of paclitaxel resistance in non small cell lung cancer cellsPadar, Shanthala 01 January 2004 (has links) (PDF)
Chemoresistance is a major obstacle in successful chemotherapy. This research explored several genetic and epigenetic factors involved in chemoresistance, angiogenesis and metastasis in the human non-small cell lung cancer cell line A549 and its paclitaxel resistant subclone A549-T24. We characterized various morphological and biochemical differences (with a special focus on the Bcl-2 family of apoptotic regulators) between the two cell lines. Although paclitaxel induced apoptosis in both the cell lines, the subclone was 10 fold more resistant to this drug. Our immunocytochemistry data indicated that VEGF (a potent inducer of angiogenesis) and VEGF receptor-2 mRNA expression levels were higher in A549-T24 cells compared to those in A549 cells. We also observed a higher angiogenic potential in A549-T24 cells as determined by the effect of these cells on endothelial cell growth and cell sprouting using EA.hy926 human umbilical vein endothelial cells and rat aortic ring models, respectively. Our data suggested that tumor cell-induced angiogenesis may involve activation of nitric oxide, calcium and PI3K signaling pathways. Intracellular calcium [Ca 2+ ] i plays a critical role in cellular growth and apoptosis. We characterized alterations in the regulatory pathways of [Ca 2+ ] i handling in our cell lines. While the endoplasmic reticulum calcium store ([Ca 2+ ] er ) was significantly lower, calcium influx pathways were considerably inhibited in A549-T24 cells compared to A549 cells. We investigated the actions of 2-aminoethoxydiphenyl borate to release [Ca 2+ ] er and to block store operated Ca 2+ channels. In addition, we studied the role of Ca 2+ in thapsigargin-induced apoptosis in A549 cells. Integrins, a family of cell adhesion proteins, inhibit apoptosis via activation of survival signals. Integrin (mainly β 3 and α 5 ) gene expression patterns and functions differed between A549 and A549-T24 cell lines, suggesting that adhesion to matrix elements may modulate the response to paclitaxel. Indeed, adhesion to extracellular matrix proteins via integrins resulted in a further decrease in chemosensitivity in A549-T24 cells with simultaneous inactivation of BAD (a pro-apoptotic protein). Cell adhesion mediated drug resistance was successfully reversed using integrin blockers (GRGDS and LM609). In summary, our data suggested that chemoresistance is multifactorial. Understanding the molecular mechanisms of chemoresistance will enable the design of better anticancer agents.
|
106 |
The Role of Endoplasmic Reticulum Stress and Hepatic Stellate Cells in Inducing Chemoresistance in Hepatocellular Carcinoma / Den roll som endoplasmatiskt retikulumstress och stellatceller i levern spelar för att framkalla kemoresistens vid hepatocellulärt karcinomKhaled, Jaafar January 2021 (has links)
Hepatocellular carcinoma (HCC) is the most common liver malignancy that usually develops in patients suffering from chronic liver diseases. One of the major problems faced in the treatment of HCC is severe chemoresistance. Endoplasmic reticulum (ER) stress and hepatic stellate cells play an important role in tumour survival and growth as well as fibrosis. This study further investigates the crosstalk between ER-stress and hepatic stellate cells in HCC resistant cells as well as their relation to chemoresistance markers expression. Mice with chemically induced HCC were divided in 3 different treatment group; one was only treated with doxorubicin, one only with pharmacological ER-stress inhibitor 4μ8C, and one was treated with a combination of doxorubicin and 4μ8C. Tumour burden, fibrosis and cell proliferation were assessed through histological analysis and ImageJ processing. Chemoresistance markers expression was evaluated through mRNAs determination using real-time qPCR. While the combined treatment consisting of doxorubicin and pharmacological ER-stress inhibitor (4μ8C) has shown to positively reduce tumour progression, ferroptosis and collagen deposition, consequently decreasing fibrosis, drug resistance markers’ expression, on the other hand, seems to be more intricate, thus indicating that further investigations are probably needed. / Hepatocellulärt karcinom (HCC) är den vanligaste maligniteten i levern som vanligtvis utvecklas hos patienter som lider av kroniska leversjukdomar. Ett av de största problemen vid behandling av HCC är svår kemoresistens. Stress i endoplasmatiska retikulum (ER) och hepatiska stellatceller spelar en viktig roll för tumörernas överlevnad och tillväxt samt för fibros. I denna studie undersöks vidare samspelet mellan ER-stress och hepatiska stellatceller i HCC-resistenta celler samt deras relation till uttryck av kemoresistensmarkörer. Möss med kemiskt inducerad HCC delades in i tre olika behandlingsgrupper; en behandlades enbart med doxorubicin, en enbart med den farmakologiska ER-stresshämmaren 4μ8C och en behandlades med en kombination av doxorubicin och 4μ8C. Tumörbörda, fibros och cellproliferation bedömdes genom histologisk analys och ImageJ-bearbetning. Kemoresistensmarkörernas uttryck utvärderades genom bestämning av mRNA med hjälp av qPCR i realtid. Medan kombinationsbehandlingen bestående av doxorubicin och farmakologisk ER-stresshämmare (4μ8C) har visat sig minska tumörprogressionen, ferroptos och kollagenavlagring och därmed minska fibros, verkar uttrycket av läkemedelsresistensmarkörer å andra sidan vara mer invecklat, vilket tyder på att det troligen behövs ytterligare undersökningar.
|
107 |
Der Einfluss der subzellulären Caspase-8-Lokalisation auf die Chemoresistenz des malignen MelanomsDunsche, Luise 22 November 2024 (has links)
Das maligne Melanom ist für 90 % der Sterbefälle bei Hautkrebs verantwortlich (Garbe et al., 2022). Verschiedene Mutationen wirken sich auf die Signalwege aus und fördern die Karzinogenese, was zu einem ständigen Wandel der Melanomtherapie führt. Zusätzlich zu der, in frühen Stadien kurativen, chirurgischen Therapie, erzielt die zielgerichtete Therapie mit BRAF- und MEK-Inhibitoren in den letzten Jahren durchschlagende Erfolge für das Gesamtüberleben der Patienten, bei nicht-resezierbaren Metastasen wird weiterhin die Chemotherapie empfohlen. Zunehmende Therapieresistenzen schränken die Melanomtherapie ein. Müller et al. (2020) weisen auf Wildtyp p53 exprimierende Tumorzellen hin, die mithilfe der Expression von nukleärer Caspase-8 den G2/M-Zellzyklusarrest umgehen und so die Proliferation und Expansion entarteter Tumorzellen fördern. Bei der Untersuchung von 16 Melanomzellproben, die sich in ihrem BRAF-/NRAS- und p53 Mutationsstatus, sowie in ihren klinischen Vortherapien unterscheiden, konnte die potenziell klinische Relevanz der nukleären Caspase-8 herausgearbeitet werden. Wir konnten bestätigen, dass nukleär lokalisierte Caspase-8 bei Wildtyp p53 exprimierenden Tumorzellen zu Chemoresistenz und auch in geringem Maß zur Resistenz gegenüber zielgerichteten Therapien führt. Zunächst wurde die subzelluläre Lokalisation von Caspase-8 in den vorhandenen 16 Melanomzellproben mithilfe immunzytochemischer Färbung bestimmt, wobei sich herausstellte, dass die Melanomzellproben mit nukleärer Caspase-8, alle von Metastasen stammen. Das hohe Metastasierungspotenzial dieser Zellproben wurde weiterhin dadurch betont, dass die Melanomzellproben mit nukleär lokalisierter Caspase-8 die stärkste Migration aufwiesen. Dem gegenüberstehend präsentierten sie die geringste Proliferation, was den direkten Zusammenhang zwischen migrativen und proliferativen Eigenschaften bei Tumorzellen unterstreicht. Ebenso zeigten BRAF-mutierte Zellproben die stärkste Migration und bekräftigen, dass Melanompatienten mit BRAF-Mutation früher Metastasen entwickeln. Das stärkste Wachstum zeigten hingegen die Zellproben mit diffus lokalisierter Caspase-8, was die protektive Relevanz der diffusen Caspase-8 für Tumorzellen verdeutlicht. Ein Einfluss des p53-Mutationsstatus auf die Proliferation und Migration konnte ebenfalls nachgewiesen werden. Die Zellproben mit Wildtyp p53 migrierten stärker, wohingegen die Zellprobe mit mutp53(E285K) stark proliferierte. Bei Korrelation der subzellulären Caspase-8-Lokalisation mit der Caspase-8- und p53-Expression der Melanomzellproben mithilfe Westernblotanalysen zeigte sich, dass metastatische Zellproben verstärkt Caspase-8 exprimieren. Dies betraf besonders die metastatischen Zellproben mit nukleär lokalisierter Caspase-8, die kein p53 oder wenig Wildtyp p53 exprimieren. Diese inverse Korrelation der Caspase-8- und p53 Expression konnte ebenfalls bei den unstimulierten Zellproben mit zytoplasmatischer Caspase-8 festgestellt werden. Zellprobe M31 mit mutp53(E285K) exprimiert konstant stark p53 und wies Chemoresistenz auf. Bei Untersuchung des Zelltods 24 h und 48 h nach Cisplatinstimulation, sowie 48 h nach Stimulation mit Dabrafenib, Trametinib und deren Kombination mithilfe des IncuCyte® Readers, wurde deutlich, dass die Zellproben mit nukleär lokalisierter Caspase-8 chemoresistenter sind als die restlichen Zellproben, wobei die Zellproben mit diffus lokalisierter Caspase-8 am resistentesten gegenüber den zielgerichteten Therapeutika sind. Die protektive Rolle der diffusen Caspase-8 für die Tumorzellen konnte unterstützend durch die Zunahme der Apoptose bei einigen Zellproben nach Herunterregulierung von Caspase-8 nachgewiesen werden. Hervorzuheben ist, dass die Zellproben mit zytoplasmatischer Caspase-8 am sensitivsten, sowohl auf zielgerichtete Therapeutika als auch auf Chemotherapie reagierten. Insgesamt induzierte Cisplatin deutlich mehr Zelltod als die zielgerichteten Therapien, weshalb die potenzielle Überlegenheit der Chemotherapie, besonders bei rezidivierten Melanomen bedacht werden muss. Es bestätigte sich ebenfalls die Relevanz des BRAF-/NRAS Mutationsstatus für die Therapiesensitivität, wobei BRAF-mutierte Zellproben die größte Chemosensitivität präsentierten und NRAS-mutierte Zellproben vor allem nach der Stimulation mit Trametinib und der Kombination Dabrafenib + Trametinib Zelltod aufwiesen. Überraschenderweise zeigten sich die Zellproben vortherapierter Melanompatienten sensitiver gegenüber Dabrafenib und Cisplatin als die Zellproben therapienaiver Melanompatienten, was die Bedeutung von Chemotherapie und Dabrafenib für vortherapierte, rezidivierte Tumore bzw. Metastasen hervorhebt. Weiterhin konnte der Impact des p53-Mutationsstatus herausgearbeitet werden. Die Zellproben mit mutiertem oder ohne p53 wiesen die größte Cisplatinresistenz auf, wohingegen die Zellproben mit Wildtyp p53 am meisten Zelltod zeigten, gefolgt von den Zellproben mit dem Einzelnukleotidpolymorphismus (wt(P72R)). Nach Herunterregulierung des mutierten p53 nahm die Apoptose nach Cisplatinstimulation hoch signifikant zu. Dahingegen zeigten besonders die Zellproben mit zytoplasmatischer Caspase-8 und Wildtyp p53 eine Hochregulierung von p53 nach Cisplatinstimulation im Westernblot. Wir konnten nachweisen, dass die Wildtyp p53 exprimierende Zellprobe M40 nukleär lokalisierte Caspase-8 aufweist und die stärkste Chemoresistenz zeigte, wohingegen die Zellproben mit diffus oder zytoplasmatisch lokalisierter Caspase-8, die Wildtyp p53 oder den Einzelnukleotidpolymorphismus (wt(P72R)) exprimieren, am chemosensitivsten waren. Die Therapieresponsivität von Melanomen wird durch eine Vielzahl an Faktoren beeinflusst, die für die optimale Behandlung der Patienten bei Beginn einer Therapie möglichst genau bestimmt werden sollten. Wir empfehlen für die Risikostratefizierung und Prognose des Krankheitsverlaufes, sowie für die Entscheidung des Therapiewegs, die Bestimmung der subzellulären Caspase-8-Lokalisation in Kombination mit dem p53-Mutationsstatus. Weiterhin weisen wir auf die Bedeutung des BRAF-/NRAS-Mutationsstatus sowie mögliche Vortherapien in Bezug auf Therapieresistenz hin und stellen die Bedeutung der Chemotherapie, besonders für rezidivierte, BRAF-mutierte Melanompatienten bei Resistenzentwicklung gegen BRAF- und/oder MEK-Inhibitoren heraus. / Malignant melanoma is responsible for 90 % of skin cancer deaths (Garbe et al., 2022). Various mutations affect the signaling pathways and promote carcinogenesis, which leads to a constant change in melanoma therapy. In addition to surgical therapy, which is curative in the early stages, targeted therapy with BRAF and MEK inhibitors has achieved resounding successes for the overall survival of patients in recent years while chemotherapy is still recommended for non-resectable metastases. Increasing therapy resistance limits melanoma therapy, with Müller et al. (2020) pointing to wild-type p53-expressing tumor cells that use the expression of nuclear caspase-8 to bypass the G2/M cell cycle arrest and thus promote the proliferation and expansion of degenerated tumor cells. By investigating 16 melanoma cell samples differing in their BRAF/NRAS and p53 mutation status, as well as in their prior clinical therapies, the potential clinical relevance of nuclear caspase-8 could be elaborated. We were able to confirm that nuclear localized caspase-8 in wild-type p53-expressing tumor cells leads to chemoresistance and, to a lesser extent, to resistance to targeted therapies. First, the subcellular localization of caspase-8 in the existing 16 melanoma cell samples was determined using immunocytochemical staining, which revealed that the melanoma cell samples with nuclear caspase-8 all originated from metastases. The high metastatic potential of these cell samples was further emphasized by the fact that the melanoma cell samples with nuclear localized caspase-8 showed the strongest migration. In contrast, they presented the lowest proliferation, underlining the direct correlation between migratory and proliferative properties in tumor cells. Likewise, BRAF-mutated cell samples showed the strongest migration and verified that melanoma patients with BRAF mutations develop metastases earlier. In contrast, the cell samples with diffusely localized caspase-8 showed the strongest growth, which illustrates the relevance of diffusely localized caspase-8 in its protective function in tumor cells. The impact of the p53 mutation status on proliferation and migration could also be demonstrated. The cell samples with wild-type p53 migrated stronger, whereas the cell samples with mutp53(E285K) showed stronger proliferation. Correlation of subcellular caspase-8 localization with caspase-8 and p53 expression of melanoma cell samples using western blot analysis showed that metastatic cell samples express more caspase-8. This was particularly true for the metastatic cell samples with nuclearly localized caspase-8, which express little wild-type p53 or no p53. This inverse correlation of caspase-8 and p53 expression was also observed in the unstimulated cell samples with cytoplasmically localized caspase-8, respectively. Cell sample M31 with mutp53(E285K) consistently expressed high levels of p53 and exhibited chemoresistance. When examining cell death 24 h and 48 h after cisplatin stimulation, as well as 48 h after stimulation with dabrafenib, trametinib and their combination using the IncuCyte® Reader, it became clear that the cell samples with nuclearly localized caspase-8 are the most chemoresistant, whereby the cell samples with diffusely localized caspase-8 are the most resistant to the targeted therapeutics. The protective role of diffusely localized caspase-8 for the tumor cells was supportively demonstrated by the increase in apoptosis in some cell samples after downregulation of caspase-8. It should be emphasized that the cell samples with cytoplasmically localized caspase-8 responded most sensitively to both targeted therapies and chemotherapy. Overall, cisplatin induced significantly more cell death than the targeted therapies, which is why the potential superiority of chemotherapy, especially in recurrent melanoma, must be considered. The relevance of BRAF/NRAS mutation status for therapy sensitivity was also confirmed, with BRAF-mutated cell samples presenting the greatest chemosensitivity and NRAS-mutated cell samples showing cell death particularly after stimulation with trametinib and the combination dabrafenib + trametinib. Surprisingly, the cell samples of pre-treated melanoma patients were more sensitive to dabrafenib and cisplatin than the cell samples of treatment-naive melanoma patients, which highlights the importance of chemotherapy and dabrafenib for pre-treated, recurrent tumors and metastases. Furthermore, the impact of the p53 mutation status could be worked out. The cell samples with mutated or no p53 showed the highest cisplatin resistance, whereas the cell samples with wild-type p53 showed the highest cell death, followed by the cell samples with the single nucleotide polymorphism (wt(P72R)). After downregulation of mutant p53, apoptosis
increased highly significantly after cisplatin stimulation. In contrast, especially the cell samples with cytoplasmically localized caspase-8 and wild-type p53 showed an upregulation of p53 in the Western blot after cisplatin stimulation. We demonstrated that wild-type p53 and nuclear caspase-8 expressing cell sample M40 exhibited the strongest chemoresistance, whereas the cell samples with diffusely or cytoplasmically localized caspase-8 expressing wild-type p53 or the single nucleotide polymorphism (wt(P72R)) were the most chemosensitive. In summary, it is clear that the treatment response of melanoma is influenced by a variety of factors that should be determined as precisely as possible for the optimal treatment of patients at the start of therapy. We recommend the determination of subcellular caspase-8 localization in combination with the p53 mutation status for risk stratification and prognosis of disease progression, as well as for the optimal therapy. Furthermore, we point out the importance of BRAF/NRAS mutation status and possible prior therapies with regard to therapy resistance and emphasize the importance of chemotherapy, especially for relapsed, BRAF-mutated melanoma patients who developed resistance to BRAF and/or MEK inhibitors.
|
108 |
Implication du métabolisme des phospholipides dans la progression et la résistance des cancers digestifs / Study of the involvement of phospholipid metabolism in the progression and the resistance of digestive cancersCotte, Alexia 03 May 2017 (has links)
Le métabolisme des lipides joue un rôle prépondérant dans le cancer. Ce métabolisme a pour effet, particulièrement grâce à la production de phospholipides (PLs), de supporter le niveau accru de prolifération mais aussi de réguler finement des mécanismes intra-cellulaires et extra-cellulaires qui promeuvent le maintien et la progression des cellules cancéreuses. Parmi tous ces acteurs, les gouttelettes lipidiques (GLs), connues pour leur fonction de réservoir, commencent à dévoiler leurs côtés sombres. Notre premier projet nous a permis de mettre en avant l’accumulation de GLs par des cellules de cancer colorectal (CCR) chimiorésistantes. La formation de GLs est régie par l’expression de l’enzyme lysophosphatidylcholine acyltransférase 2 (LPCAT2), permettant la production de phosphatidylcholine. Elle a pour effet de protéger le réticulum endoplasmique (RE) de l’induction d’un stress prévenant l’activation d’une mort cellulaire immunogène. Ces modulations lipidiques peuvent également se retrouver dans le plasma, où elles font l’objet de l’identification de biomarqueurs. Dans ce contexte, nous avons montré dans un second projet, que certains PLs pouvaient diagnostiquer la présence d’un carcinome hépatocellulaire (CHC) sur un foie cirrhotique. Ces deux aspects soulignent l’importance du métabolisme des PLs dans les cancers digestifs. / Among all altered cancer metabolic pathways, lipid metabolism has a preponderant role in cancer development. This metabolism, especially through the production of phospholipids, supports high level of proliferation and carefully regulates intra-cellular and extra-cellular mechanisms promoting maintenance and progression of cancer cells. Among all metabolic players, lipid droplets (LD), known for their storage function, begin to reveal dark sides. Our first project led us to highlight LD involvement in the chemoresistance of colorectal cancer (CRC) cells. This resistance carries out thanks to LD accumulation during chemotherapy treatment. Their accumulation is regulated by the expression of lysophosphatidylcholine acyltransferase 2 (LPCAT2), leading to the production of phosphatidylcholine. It causes the protection of the endoplasmic reticulum (ER) stress induction preventing the activation of immunogenic cell death. These lipid modulations can also be found in plasma where they can be identified as biomarkers. In this context, we have shown that some phospholipids could prognosticate hepatocellular carcinoma (HCC) upon cirrhotic liver. These two aspects highlight the significance of phospholipid metabolism in digestive cancers.
|
109 |
Mikrosatelliteninstabilität (MSI) in Rektumkarzinomen vor und nach Chemoradiotherapie / Microsatellite instability (MSI) in rectal carcinomas previous to therapy and after chemo-radiotherapyTürk, Leonie 05 June 2012 (has links)
No description available.
|
110 |
Rôle de la voie sphingosine kinase 1/sphingosine 1-phosphate dans l'adaptation à l'hypoxie intratumorale des adénocarcinomes rénaux à cellules claires / Role of the sphingosine kinase 1/sphingosine 1-phosphate pathway in the adaptation to intratumoral hypoxia in clear cell renal cell carcinomaGstalder, Cécile 08 July 2015 (has links)
Les adénocarcinomes rénaux à cellules claires (ccRCC), qui représentent 70% des tumeurs rénales, sont fortement mais irrégulièrement vascularisés, ce qui les rend hypoxiques et donc résistants aux chimiothérapies. L'hypoxie favorise l'agressivité tumorale via l'activation des facteurs de transcription HIF-1alpha et HIF-2alpha (Hypoxia-Inducible Factors). Pour cette raison, le ciblage de l'hypoxie intratumorale et des facteurs HIF dans les ccRCC constitue une stratégie thérapeutique pertinente. Dans ce projet, nous montrons pour la première fois que la voie sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) régule HIF-2alpha in vitro et in vivo. Nos résultats indiquent que la SphK1 régule le taux intracellulaire et l'activité transcriptionnelle de HIF-2alpha dans des lignées de ccRCC représentatives de certains sous-groupes retrouvés en clinique humaine ; et impliquent la S1P extracellulaire, via le récepteur S1P1, dans la régulation de HIF-1alpha et HIF-2alpha. D'autre part, nous avons évalué l'impact de l'inhibition des récepteurs à S1P et de la SphK1 par le FTY720 dans un modèle de ccRCC in vivo. Nos résultats indiquent que le FTY720 entraine une diminution transitoire du taux intratumoral de HIF-1alpha et HIF-2alpha ainsi qu'un remodelage du réseau vasculaire tumoral. En effet, le FTY720 induit une normalisation vasculaire qui aboutit à une oxygénation tumorale transitoire. Enfin, nous montrons que ce traitement permet de sensibiliser un modèle murin de ccRCC à la chimiothérapie. Ces résultats valident le rôle de la voie SphK1/S1P comme régulateur de l'adaptation à l'hypoxie dans les ccRCC. Ils constituent une étape indispensable à la transposition en clinique humaine du concept selon lequel la voie SphK1/S1P peut être ciblée afin de diminuer l'hypoxie intratumorale et de chimiosensibiliser certains cancers, le FTY720 étant déjà sur le marché. / Clear cell renal cell carcinomas (ccRCC) represent 70% of renal tumors. Because of their dense and irregular vascular network, ccRCC become hypoxic and therefore resistant to chemotherapies. Hypoxia promotes tumor aggressiveness via the activation of HIF-1alpha and HIF-2alpha (Hypoxia-Inducible Factors). For this reason, the control of intratumoral hypoxia and HIF in ccRCC could be a relevant therapeutic strategy to improve the efficacy of current treatments. In this study, we show for the first time that the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway regulates HIF-2alpha in vitro and in vivo. Our results indicate that SphK1 regulates HIF-2alpha intracellular level and transcriptional activity in ccRCC cell lines that are representative of some clinical ccRCC subgroups. Our data also involve extracellular S1P, via its receptor S1P1, in the regulation of HIF-1alpha and HIF-2alpha. In addition, in a ccRCC mouse model, we show that FTY720 - an inhibitor of the SphK1/S1P pathway- transiently decreases HIF-1alpha and HIF-2alpha intratumoral level. This is associated with a transient remodeling of the tumor vascular network indicating that FTY720 induces a vascular normalization that leads to transient tumor oxygenation. Finally, we show that this treatment sensitizes a ccRCC mouse model to chemotherapy. Overall, these results validate the key role of the SphK1/S1P pathway in the adaptation to hypoxia in ccRCC cell and animal models. Our results provide a mechanistic basis to target the SphK1/S1P pathway with FTY720 by increasing the efficacy of chemotherapy in ccRCC. They are a prerequisite for clinical transposition as FTY720 is a drug approved used in human clinic.
|
Page generated in 0.0818 seconds