• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantitation of a Novel Engineered Anti-infective Host Defense Peptide, ARV-1502: Pharmacokinetic Study of Different Doses in Rats and Dogs

Brakel, Alexandra, Volke, Daniela, Kraus, Carl N., Otvos, Laszlo, Hoffmann, Ralf 03 April 2023 (has links)
The designer proline-rich antimicrobial peptide (PrAMP) Chex1-Arg20 amide (ARV-1502) is active against Gram-negative and Gram-positive pathogens in differentmurine infection models when administered parenterally and possesses a wide therapeutic index. Here we studied the pharmacokinetics of ARV-1502 for the first time when administered intramuscularly or intravenously (IV) in Sprague Dawley rats and Beagle dogs. First, a specific and robust quantitation method relying on parallel reaction monitoring (PRM) using a high-resolution hybrid quadrupole-Orbitrap mass spectrometer coupled on-line to reversed-phase uHPLC was established and validated. The limit of detection was 2 ng/mL and the limit of quantitation was 4 ng/mL when spiked to pooled rat and dog plasma. When ARV-1502 was administered IV at doses of 75 and 250 μg/kg in dogs and rats, the plasma concentrations were 0.7 and 3.4μg/mL 2min post-administration, respectively. ARV-1502 plasma concentrations declined exponentially reaching levels between 2 and 4 ng/mL after 2 h. Intramuscular administration of 0.75 mg/kg in dogs and 2.5 mg/kg in rats resulted in a different pharmacokinetics profile. The plasma concentrations peaked at 15min post-injection at 1μg/mL (dogs) and 12μg/mL (rats) and decreased exponentially within 3 h to 4 and 16 ng/mL, respectively. The initial plasma concentrations of ARV-1502 and the decay timing afterwards indicated that the peptide circulated in the blood stream for several hours, at some point above the minimal inhibitory concentration against multidrug-resistant Enterobacteriaceae, with blood concentrations sufficient to suppress bacterial growth and to modulate the immune system.
2

Influence of Substitutions in the Binding Motif of Proline-Rich Antimicrobial Peptide ARV-1502 on 70S Ribosome Binding and Antimicrobial Activity

Brakel, Alexandra, Krizsan, Andor, Itzenga, Renke, Kraus, Carl N., Otvos Jr., Laszlo, Hoffmann, Ralf 18 January 2024 (has links)
Proline-rich antimicrobial peptides (PrAMPs) are promising candidates to treat bacterial infections. The designer peptide ARV-1502 exhibits strong antimicrobial effects against Enterobacteriaceae both in vitro and in vivo. Since the inhibitory effects of ARV-1502 reported for the 70 kDa heat-shock protein DnaK do not fully explain the antimicrobial activity of its 176 substituted analogs, we further studied their effect on the bacterial 70S ribosome of Escherichia coli, a known target of PrAMPs. ARV-1502 analogues, substituted in positions 3, 4, and 8 to 12 (underlined) of the binding motif D3KPRPYLPRP12 with aspartic acid, lysine, serine, phenylalanine or leucine, were tested in a competitive fluorescence polarization (FP) binding screening assay using 5(6)-carboxyfluoresceinlabeled (Cf-) ARV-1502 and the 70S ribosome isolated from E. coli BW25113. While their effect on ribosomal protein expression was studied for green fluorescent protein (GFP) in a cell-free expression system (in vitro translation), the importance of known PrAMP transporters SbmA and MdtM was investigated using E. coli BW25113 and the corresponding knockout mutants. The dissociation constant (Kd) of 201 16 nmol/L obtained for Cf-ARV-1502 suggests strong binding to the E. coli 70S ribosome. An inhibitory binding assay indicated that the binding site overlaps with those of other PrAMPs including Onc112 and pyrrhocoricin as well as the non-peptidic antibiotics erythromycin and chloramphenicol. All these drugs and drug candidates bind to the exit-tunnel of the 70S ribosome. Substitutions of the C-terminal fragment of the binding motif YLPRP reduced binding. At the same time, inhibition of GFP expression increased with net peptide charge. Interestingly, the MIC values of wild-type and DsbmA and DmdtM knockout mutants indicated that substitutions in the ribosomal binding motif altered also the bacterial uptake, which was generally improved by incorporation of hydrophobic residues. In conclusion, most substituted ARV-1502 analogs bound weaker to the 70S ribosome than ARV-1502 underlining the importance of the YLPRP binding motif. The weaker ribosomal binding correlated well with decreased antimicrobial activity in vitro. Substituted ARV-1502 analogs with a higher level of hydrophobicity or positive net charge improved the ribosome binding, inhibition of translation, and bacterial uptake.
3

Functional Effects of ARV-1502 Analogs Against Bacterial Hsp70 and Implications for Antimicrobial Activity

Brakel, Alexandra, Kolano, Lisa, Kraus, Carl N., Otvos Jr, Laszlo, Hoffmann, Ralf 03 April 2023 (has links)
The antimicrobial peptide (AMP) ARV-1502 was designed based on naturally occurring short proline-rich AMPs, including pyrrhocoricin and drosocin. Identification of chaperone DnaK as a therapeutic target in Escherichia coli triggered intense research on the ligand- DnaK-interactions using fluorescence polarization and X-ray crystallography to reveal the binding motif and characterize the influence of the chaperone on protein refolding activity, especially in stress situations. In continuation of this research, 182 analogs of ARV-1502 were designed by substituting residues involved in antimicrobial activity against Gramnegative pathogens. The peptides synthesized on solid-phase were examined for their binding to E. coli and S. aureus DnaK providing 15 analogs with improved binding characteristics for at least one DnaK. These 15 analogs were distinguished from the original sequence by their increased hydrophobicity parameters. Additionally, the influence of the entire DnaK chaperone system, including co-chaperones DnaJ and GrpE on refolding and ATPase activity, was investigated. The increasingly hydrophobic peptides showed a stronger inhibitory effect on the refolding activity of E. coli chaperones, reducing protein refolding by up to 64%. However, these more hydrophobic peptides had only a minor effect on the ATPase activity. The most dramatic changes on the ATPase activity involved peptides with aspartate substitutions. Interestingly, these peptides resulted in a 59% reduction of the ATPase activity in the E. coli chaperone system whereas they stimulated the ATPase activity in the S. aureus system up to 220%. Of particular note is the improvement of the antimicrobial activity against S. aureus from originally >128 μg/mL to as low as 16 μg/mL. Only a single analog exhibited improved activity over the original value of 8 μg/mL against E. coli. Overall, the various moderate-throughput screenings established here allowed identifying (un)favored substitutions on 1) DnaK binding, 2) the ATPase activity of DnaK, 3) the refolding activity of DnaK alone or together with co-chaperones, and 4) the antimicrobial activity against both E. coli and S. aureus.

Page generated in 0.0354 seconds