1 |
Protection of Half Sulfur Mustard Gas-Induced Lung Injury in Guinea Pigs by Antioxidant LiposomesMukherjee, Shyamali, Stone, William L., Yang, Hongsong, Smith, Milton G., Das, Salil K. 01 March 2009 (has links)
The purpose of this study was to develop antioxidant liposomes as an antidote for mustard gas-induced lung injury in a guinea pig model. Five liposomes (LIP-1, LIP-2, LIP-3, LIP-4, and LIP-5) were tested with differing levels of phospholipid, cholesterol, phosphatidic acid, tocopherol (α, γ, δ), N-acetylcysteine (NAC), and glutathione (GSH). A single dose (200 μL) of liposome was administered intratracheally 5 min or 1 h after exposure to 2-chloroethyl ethyl sulfide (CEES). The animals were sacrificed either 2 h after exposure (for lung injury study) or 30 days after exposure (for histology study). The liposomes offered 9%-76% protection against lung injury. The maximum protection was with LIP-2 (71.5% protection) and LIP-4 (75.4%) when administered 5 min after CEES exposure. Delaying the liposome administration 1 h after CEES exposure decreased the efficacy. Both liposomes contained 11 mM α-tocopherol, 11 mM γ-tocopherol, and 75 mM NAC. However, LIP-2 contained additionally 5mM δ-tocopherol. Overall, LIP-2 and LIP-4 offered significant protection by controlling the recruitment of neutrophils, eosinophils, and the accumulation of septal and perivascular fibrin and collagen. However, LIP-2 showed better protection than LIP-4 against the accumulation of red blood cells in the bronchi, alveolar space, arterioles and veins, and fibrin and collagen deposition in the alveolar space. The antifibrotic effect of the liposomes, particularly LIP-2, was further evident by a decreased level of lipid peroxidation and hydroxyproline in the lung. Thus, antioxidant liposomes containing both NAC and vitamin E are an effective antidote against CEES-induced lung injury.
|
2 |
The Fate and Transport of Chemical Warfare Agent Simulants in Complex MatricesDaphney, Cedrick M., 15 July 2008 (has links)
Experiments to determine the fate and transport of the chemical warfare agent (CWA) simulants diisopropyl fluorophosphate (DIFP), O,S-diethyl methylphosphonothioate (OSDEMP), and 2-Chloroethyl ethyl sulfide (CEES) exposed to complex matrix systems are reported here. The aforementioned simulants were used in place of O-isopropyl methylphosphonofluoridate (GB), O-Ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX), and Bis (2-chloroethyl) sulfide (HD), respectively. At ambient temperature, simulant pH (2.63 to 12.01) and reaction time (1 minute to 24 hours) were found to have significant influence on the recovery of simulants from charcoal, plastic, and TAP (butyl rubber gloves) in aqueous media. Buffer systems used included, phosphate, acetate, borate, and disodium tetraborate. Organic extractions were carried out using a 90:10 (v/v) dichloromethane / 2-propanol solution. All extracts were analyzed with a gas chromatograph equipped with flame ionization and flame photometric detectors (GC-FID-FPD). The FPD was used to determine the amount of simulant recovery.
|
3 |
SYNTHESIS OF MIDDLE-CHAIN CARBOXYL- AND PRIMARY AMINE-FUNCTIONALIZED POLYSTYRENES USING ANIONIC POLYMERIZATION TECHNIQUESSen, Mustafa Yasin January 2005 (has links)
No description available.
|
4 |
Directed Enzyme Evolution of Theta Class Glutathione Transferase : Studies of Recombinant Libraries and Enhancement of Activity toward the Anticancer Drug 1,3-bis(2-Chloroethyl)-1-nitrosoureaLarsson, Anna-Karin January 2003 (has links)
<p>Glutathione transferases (GSTs) are detoxication enzymes involved in the cellular protection against a wide range of reactive substances. The role of GSTs is to catalyze the conjugation of glutathione with electrophilic compounds, which generally results in less toxic products. </p><p>The ability to catalyze the denitrosation of the anticancer drug 1,3-bis(2-chloroethyl)- 1-nitrosourea (BCNU) was measured in twelve different GSTs. Only three of the enzymes showed any measurable activity with BCNU, of which human GST T1-1 was the most efficient. This is of special interest, since human GST T1-1 is a polymorphic protein and its expression in different patients may be crucial for the response to BCNU.</p><p>DNA shuffling was used to create a mutant library by recombination of cDNA coding for two different Theta-class GSTs. In total, 94 randomly picked mutants were characterized with respect to their catalytic activity with six different substrates, expression level and sequence. A clone with only one point mutation compared to wild-type rat GST T2-2 had a significantly different substrate-activity pattern. A high expressing mutant of human GST T1-1 was also identified, which is important, since the yield of the wild-type GST T1-1 is generally low. </p><p>Characterization of the Theta library demonstrated divergence of GST variants both in structure and function. The properties of every mutant were treated as a point in a six-dimensional substrate-activity space. Groups of mutants were formed based on euclidian distances and K-means cluster analyses. Both methods resulted in a set of five mutants with high alkyltransferase activities toward dichloromethane and 4-nitrophenethyl bromide (NPB). </p><p>The five selected mutants were used as parental genes in a new DNA shuffling. Addition of cDNA coding for mouse and rat GST T1-1 improved the genetic diversity of the library. The evolution of GST variants was directed towards increased alkyltransferase activity including activity with the anticancer drug BCNU. NPB was used as a surrogate substrate in order to facilitate the screening process. A mutant from the second generation displayed a 65-fold increased catalytic activity with NPB as substrate compared to wild-type human GST T1-1. The BCNU activity with the same mutant had increased 175-fold, suggesting that NPB is a suitable model substrate for the anticancer drug. Further evolution presented a mutant in the fifth generation of the library with 110 times higher NPB activity than wild-type human GST T1-1.</p>
|
5 |
Directed Enzyme Evolution of Theta Class Glutathione Transferase : Studies of Recombinant Libraries and Enhancement of Activity toward the Anticancer Drug 1,3-bis(2-Chloroethyl)-1-nitrosoureaLarsson, Anna-Karin January 2003 (has links)
Glutathione transferases (GSTs) are detoxication enzymes involved in the cellular protection against a wide range of reactive substances. The role of GSTs is to catalyze the conjugation of glutathione with electrophilic compounds, which generally results in less toxic products. The ability to catalyze the denitrosation of the anticancer drug 1,3-bis(2-chloroethyl)- 1-nitrosourea (BCNU) was measured in twelve different GSTs. Only three of the enzymes showed any measurable activity with BCNU, of which human GST T1-1 was the most efficient. This is of special interest, since human GST T1-1 is a polymorphic protein and its expression in different patients may be crucial for the response to BCNU. DNA shuffling was used to create a mutant library by recombination of cDNA coding for two different Theta-class GSTs. In total, 94 randomly picked mutants were characterized with respect to their catalytic activity with six different substrates, expression level and sequence. A clone with only one point mutation compared to wild-type rat GST T2-2 had a significantly different substrate-activity pattern. A high expressing mutant of human GST T1-1 was also identified, which is important, since the yield of the wild-type GST T1-1 is generally low. Characterization of the Theta library demonstrated divergence of GST variants both in structure and function. The properties of every mutant were treated as a point in a six-dimensional substrate-activity space. Groups of mutants were formed based on euclidian distances and K-means cluster analyses. Both methods resulted in a set of five mutants with high alkyltransferase activities toward dichloromethane and 4-nitrophenethyl bromide (NPB). The five selected mutants were used as parental genes in a new DNA shuffling. Addition of cDNA coding for mouse and rat GST T1-1 improved the genetic diversity of the library. The evolution of GST variants was directed towards increased alkyltransferase activity including activity with the anticancer drug BCNU. NPB was used as a surrogate substrate in order to facilitate the screening process. A mutant from the second generation displayed a 65-fold increased catalytic activity with NPB as substrate compared to wild-type human GST T1-1. The BCNU activity with the same mutant had increased 175-fold, suggesting that NPB is a suitable model substrate for the anticancer drug. Further evolution presented a mutant in the fifth generation of the library with 110 times higher NPB activity than wild-type human GST T1-1.
|
Page generated in 0.08 seconds