• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 375
  • 219
  • 62
  • 41
  • 16
  • 13
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • Tagged with
  • 1002
  • 181
  • 130
  • 127
  • 87
  • 71
  • 68
  • 62
  • 60
  • 58
  • 56
  • 52
  • 49
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Fabrication, Validation, and Performance Evaluation of a New Sampling System for the In-Situ Chemical Speciation of Chromium Ions in Groundwater Using Supported Liquid Membranes (SLMs)

Owens, Lesley Shantell 24 January 2013 (has links)
A sampler has been fabricated to facilitate the in-situ speciation of Cr. Teflon® was selected as the material for the samplers because of its inert chemical nature. The design of the sampler is based on the Supported Liquid Membrane (SLM) extraction technique, which utilizes charged organic carrier molecules loaded onto a polymeric (Teflon®) support membrane and the principles of electrostatics to selectively transport Cr ions through an ion-pairing mechanism. Cr ions in the feed solution that have an opposite charge from the carrier molecule form an ion-pair with the carrier and are transported through the membrane and deposited into a second aqueous phase referred to as the acceptor phase. A counter-ion from the acceptor phase is exchanged for the Cr ion to complete the extraction process. Since the acceptor phase is contained in a Teflon® bottle, the SLM sampler is capable of speciation and storage of Cr ions, which is a major advantage over current speciation techniques. A food coloring test was used to check the samplers for leaks. A plastic barrier was used in place of the polymeric membrane and the acceptor phase bottle was filled with DI water. The sampler was submerged in a beaker containing food coloring and DI water. The bottle contents were checked for the presence of food coloring using UV-vis spectroscopy. The sampler was determined to be leak-free if the bottle did not contain food coloring. All systems prepared were validated upon the initial test and required no further manipulation to ensure structural soundness. The SLM extraction technique involves two liquid-liquid extractions (LLEs). Before the samplers could be evaluated for their performance and stability in Cr speciation applications, liquid-liquid extraction studies were conducted on both systems (Cr (III) and Cr (VI)) to determine the optimal operating parameters (carrier concentration, decanol concentration, and acceptor phase concentration) of the SLM system. The selectivity of each system was also evaluated to validate proper SLM function. The performance of the samplers was evaluated in a series of tank studies that focused on the uptake of Cr into the acceptor phase as well as the depletion of Cr ion from this phase. The goal of the performance studies was to determine the mechanical and chemical stability of the SLM samplers. As part of the validation process, selectivity studies and studies without the carrier molecule were conducted to ensure that the systems were functioning according to SLM theory. Tank studies that simulated natural sampling condition were also conducted. The results of the tests conducted in the laboratory indicate that the SLM samplers are a stable, reliable, and viable method for Cr speciation. Future directions of this project will include the incorporation of the SLM sampler into the existing Multi-layer Sampler (MLS) technology as well as the analysis of the stability and performance of the incorporated systems in the ""in-situ speciation application. / Ph. D.
292

Surface-decorated macadamia (Macadamia sp.) nutshells for the detoxification of chromium(VI) polluted water

Moyo, Malvin 02 1900 (has links)
Ph. D. (Department of Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology. / Driven by the need of sustainably sourced catalysts and the use of reaction systems that generate environmentally benign by-products, the present study aimed to deposit stable, dispersed palladium (Pd) nanoparticles on the modified surfaces of granular macadamia nutshell (MNS) biomass for catalytic reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)]. Through wet impregnation with Pd(II) ions and subsequent hydrazine-mediated reduction to Pd(0), Pd nanoparticles were embedded in a scaffold of polyethyleneimine grafted on bleached MNS previously coated with a chemically bound layer of polyglycidyl methacrylate. Visualization and imagery from scanning electron microscopy showed the formation of different layers of the polymeric coating and dispersed palladium resulting from surface modification and palladium nanoparticle synthesis, respectively. X-ray diffraction, energy-dispersive X-ray spectroscopic analysis confirmed the formation of Pd on the modified MNS surface. An estimate of 5.0 nm for crystallite size was calculated by application of the Scherrer equation. The composite material, denoted Pd@PEI-MNS, exhibited catalytic activity in formic acid-mediated Cr(VI) reduction. Through a one-factor-at-a-time experimental design, the activity of the Pd@PEI-MNS was illustrated to be dependent on solution pH; initial Cr(VI) concentration, initial formic acid concentration, and presence of competing anions; Pd@PEI-MNS dose; and temperature. Subsequent modeling of the Cr(VI) removal process by response surface methodology revealed that the most influential factor was Pd@PEI-MNS dose followed by temperature and formic acid concentration. The influence of initial Cr(VI) concentration, was surpassed by the dose-temperature and dose-formic acid concentration interactive effects. Elucidation of the Cr(VI) removal mechanism by XPS and FTIR demonstrated the active participation of surface -CH2OH functional groups, the bulk of which originated from the reduction of esters of the grafted ligands. Replacement of formic acid to carbon dioxide, the -CH2OH groups were converted to -COO- groups.
293

Conversion chimique des surfaces d'alliages d'aluminium sans chrome hexavalent / Conversion coating on aluminium alloy without hexavalent chromium

Ely, Marion 15 December 2016 (has links)
Les couches de conversion actuellement utilisées dans l'industrie aéronautique, pour protéger le métal de la corrosion et favoriser l'adhérence de la peinture, contiennent du chrome hexavalent, composé toxique et cancérigène dont l'utilisation va prochainement être interdite par la réglementation européenne REACh. L'une des pistes envisagée pour remplacer ces couches chromatées est l'utilisation de couches de conversion TCP (Trivalent Chromium Protection). Ces travaux portent sur l'étude des couches de TCP et s'attachent à caractériser chaque étape du traitement de surface industriel, incluant les étapes de prétraitement et de post-traitement. Des techniques d'analyse de surface (XPS, ToF-SIMS, AFM, MEB et PM-IRRAS) ont été utilisées pour analyser la composition chimique et la morphologie de la surface après chaque étape du traitement. Cette étude a été réalisée sur un alliage d'aluminium AA 2024-T3, très utilisé en aéronautique pour ses propriétés mécanique, mais présentant une faible résistance à la corrosion. Les résultats obtenus ont notamment mis en évidence que la couche de TCP se forme sur toute la surface de l'alliage (composés intermétalliques et cavités), et ont permis de comprendre comment le post-traitement permet d'améliorer la résistance à la corrosion de la couche de TCP. Ces travaux s'intéressent également à des couches de conversion sans chrome, à base de zirconium, étudiées ici pour servir de point de départ au développement d'une conversion sans chrome qui respecterait les exigences de résistance à la corrosion. / Conversion coatings are used in aerospace industry to protect the metal from corrosion and to promote paint adhesion. Currently, chromate conversion coatings are used, but chromate is toxic and carcinogenic and its use will be forbidden by the European REACh regulation. TCP (Trivalent Chromium Protection) conversion coatings, are considered as a promising alternative to replace chromate conversion coating. This work focuses on the characterisation of the TCP layer and considers each step of the industrial surface treatment, including pre-treatment and post-treatment steps. Surface analytical techniques (XPS, ToF-SIMS, AFM, SEM and PM-IRRAS) were used to analyse the chemical composition and morphology of the surface after each step in the process. This work was done on an aluminium alloy AA 2024-T3, commonly used in the aerospace industry for its good mechanical properties, but poorly resistant to corrosion. The results obtained demonstrate, among other things, that the TCP layer totally covers the surface (intermetallic compounds and cavities) and enable to understand how the post-treatment can improve the corrosion resistance of the TCP coating. This work also focuses on conversion coating based on zirconium, which are studied here to be used as a starting point to develop a new conversion coating without chromium, meeting the corrosion resistance requirement.
294

Vitamin supplementation of sows

Shelton, Nicholas William January 1900 (has links)
Doctor of Philosophy / Department of Animal Sciences and Industry / Jim Nelssen / A total of 701 pigs were used to evaluate effects of natural vitamin E relative to synthetic vitamin E in sow diets, late gestation feeding level on sow reproductive performance, dietary L-carnitine and chromium on sow reproductive performance, and experimental design on nursery pig trial interpretation. As D-α-tocopheryl acetate increased in the sow’s diet, concentrations of α-tocopherol increased (P < 0.03) in sow plasma, colostrum, milk, pig plasma, and pig heart. Regression analysis indicated that the bioavailability coefficients for D-α-tocopheryl acetate relative to DL-α-tocopheryl acetate ranged from 2.1 to 4.2 for sow and pig plasma α-tocopherol, 2.9 to 3.0 for colostrum α-tocopherol, 1.6 for milk α-tocopherol, 1.8 for heart α-tocopherol, and 2.0 for liver α-tocopherol. Overall, this study indicates that the relative bioavailability for D-α-tocopheryl acetate relative to DL-α-tocopheryl acetate varies depending on the response criteria but is greater than the standard potency value of 1.36. Increasing sow gestation feeding level by 0.9 kg from d 90 of gestation through farrowing reduced (P = 0.001) daily lactation feed intake in gilts, but also resulted in improved conception rate in gilts, whereas increasing late gestation feeding level decreased conception rate in sows (interaction; P = 0.03). Increasing late gestation feed intake in gilts also increased (P < 0.02) pig weaning weights during the second parity. Increasing late gestation feeding levels did not improve performance of older sows. Adding L-carnitine and chromium from chromium picolinate to sow gestation and lactation diets reduced (P = 0.01) the amount of sow weight loss during lactation, however, did not improve (P > 0.05) litter size, pig birth weight, or the variation in pig birth weight. Blocking pens of nursery pigs by BW in a randomized complete block design (RCBD) did not improve the estimates for σ2error compared to a completely randomized design (CRD) where all pens were allotted to have similar means and variations of body weight. Therefore, the added degrees of freedom for the error term in the CRD allowed more power to detect treatment differences for the CRD compared to the RCBD.
295

The effects of temperature, slag chemistry and oxygen partial pressure on the behaviour of chromium oxide in melter slags

Bartie, Neill J. 12 1900 (has links)
Thesis (MScIng)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: This thesis details results obtained in an experimental study conducted to determine the effects of operating temperature, oxygen partial pressure, bulk chromium oxide content and bulk FeOx/MgO ratio on the solubility of chromium oxide in melter type slags in the platinum industry. Two PGM-containing layers in the Bushveld Complex in South Africa, the Merensky and UG2 reefs, are currently being mined for the extraction of base metals and platinum group metals (PGM). While the Merensky reef is a pyroxenitic layer, the UG2 reef is a platiniferous chromitite seam. Due to a gradual depletion in Merensky ore reserves, platinum producers have been moving towards the processing of more UG2 concentrates, which are higher in chromium oxide content. The technical difficulties associated with the smelting of concentrates with high chromium oxide contents is a matter of concern. The formation of chromite spinels in melts increases liquidus temperatures and viscosities and subsequently hampers tapping of slags and mattes from furnaces. Bottom build-up from the smelting of high chromium oxide containing concentrates could reduce effective furnace volume. From the literature reviewed it was found that very few published investigations covered melt compositions and oxygen partial pressures similar to those encountered in the platinum industry. Relevant studies were found to deal with significantly lower bulk chromium oxide and iron oxide contents. It became clear that a need exists for information on the behaviour of chromium oxide and its effects on phase chemistry and stability in melter slags. It was decided to study the phase equilibria through drop-quench experiments using six synthetic slags with bulk FeOx/MgO ratios between 0.6 and 1.9 and bulk chromium oxide contents between 1.2 and 7 wt%. Temperatures investigated were 1400, 1500 and 1600°C. The oxygen partial pressure was varied between 6.8x10-10 atm at 1400°C to8.3x10-5 atm at 1600°C. Experiments were conducted in a sealed vertical tube furnace and the required oxygen partial pressure in the furnace tube was maintained by controlling the flow rates of purified CO and CO2 gas mixtures through the tube. Reaction products were quenched after a reaction time of between 20 and 24 hours, depending on temperature, and the phase compositions were analysed by microprobe. The experimental study revealed that chromium oxide partitions very strongly into the spinel phase relative to the liquid phase, especially at lower temperatures, and higher oxygen partial pressures and bulk chromium oxide contents. The solubility of chromium oxide in the liquid phase was found to increase with increasing temperature and decreasing oxygen partial pressure. An increase in bulk chromium oxide contents of 1 wt%, under otherwise constant conditions, resulted in an increase in slag liquidus temperature of approximately 100°C over the range of temperatures investigated. At 1500°C and bulk chromium oxide contents of 3.7 and 6.4 wt% a reduction in oxygen partial pressure from 1.1x10-5 to 1.1x10-7 atm resulted in increases in soluble chromium oxide of 0.9 and 2.0 wt%, respectively. A further decrease in oxygen partial pressure to 6.7x10-9 atm resulted in increases in soluble chromium oxide of 2.8 and 4.7 wt%, respectively. Experimental results were compared to values predicted by the multi-phase equilibrium (MPE) model developed by CSIRO, and found to agree well. Slag basicity was not varied experimentally and therefore the model was used to predict its effect on the solubility of chromium oxide in the liquid phase and the stability of crystalline phases. At constant temperature, an increase in basicity resulted in a decrease in the solubility of chromium oxide in the liquid phase as well as stabilisation of the spinel phase. It was concluded that practicable combinations of one or more of four main factors, namely increased operating temperature and decreased bulk chromium oxide content, slag basicity and oxygen partial pressure, should be applied and evaluated in a plantenvironment to optimise furnace operation. The MPE model would be a valuable tool in predicting the outcomes of such investigations. / AFRIKAANSE OPSOMMING: Hierdie tesis detaileer die resultate wat verkry is uit ‘n eksperimentele studie uitgevoer om die effek van bedryfstemperatuur, die parsiële druk van suurstof, die algehele chroomoksied inhoud en die algehele FeOx/MgO verhouding op die gedrag van chroomoksied in smelter slakke in die platinum industrie te bestudeer. Twee PGM-bevattende ertslae in die Bosveldkompleks in Suid Afrika, die Merensky en UG2 riwwe, word huidiglik gemyn vir die ekstraksie van basismetale en platinumgroep metale (PGM). Die Merensky rif is ‘n piroksenitiese laag terwyl die UG2 rif ‘n platinumbevattende chromitiet laag is. As gevolg van ‘n geleidelike afname in reserwes van Merensky erts beweeg platinumprodusente al meer na die verwerking van groter hoeveelhede UG2 erts. Die tegniese probleme wat gepaard gaan met die smelting van konsentrate met hoë chroomoksied inhoud kan ‘n rede tot kommer wees. Die vorming van chromiet spinelle in die slak- en matfases verhoog likuidus temperature en viskositeite en bemoeilik die tap van hierdie fases uit oonde. Die opbou van soliede fases verlaag ook die effektiewe oondvolume. Uit die literatuurstudie is gevind dat gepubliseerde studies waarin slak samestellings en parsiële suurstofdrukke wat betrekking het op die platinumindustrie bespreek is, baie beperk is. Dit is gevind dat relevante navorsing gedoen is met aansienlik laer algehele chroom- en ysteroksied konsentrasies. Gevolglik het dit duidelik geword dat ‘n behoefte bestaan vir inligting oor die gedrag van chroomoksied in oonde en die effekte daarvan op fasechemie en –stabiliteit in smelter slakke. Daar is besluit om eksperimente uit te voer deur die gebruik van ses sintetiese slakke met algehele FeOx/MgO verhoudings tussen 0.6 en 1.9 en algehele chroomoksied konsentrasies tussen 1.2 en 7.0 % (op ‘n massabasis). Temperature van 1400, 1500 en 1600°C en suurstof parsiële drukke tussen 6.8x10-10 atm by 1400°C en 8.3x10-5 atm by 1600°C is ondersoek. Eksperimente is uitgevoer in ‘n geseëlde vertikale buisoond en dievereiste suurstofdruk in die oond is gehandhaaf deur beheer van die vloeitempos van gesuiwerde CO en CO2 gas deur die oond. Reaksieprodukte is in water geblus na ‘n reaksietyd van tussen 20 en 24 ure, afhangende van die reaksietemperatuur. Fasesamestellings is bepaal deur mikrosonde analises. Die eksperimentele studie het bewys dat chroomoksied baie sterk in die spinelfase konsentreer relatief tot die vloeistoffase, veral by laer temperature, suurstofdrukke en algehele chroomoksied konsentrasies. Dit is gevind dat die oplosbaarheid van chroomoksied in die vloeistoffase toeneem met toenemende temperatuur en afnemende suurstofdruk. ‘n Toename in die algehele chroomoksied konsentrasie van 1 massa%, onder andersins onveranderde toestande, het ‘n toename van ongeveer 100°C in likuidus temperature veroorsaak tussen 1400 en 1600°C. By 1500°C en algehele chroomoksied konsentrasies van 3.7 en 6.4 massa%, het ‘n verlaging in suurstofdruk vanaf 1.1x10-5 tot 1.1x10-7 atm respektiewelike toenames in die chroomoksied oplosbaarheid van 0.9 en 2.0 massa% veroorsaak. ‘n Verdere verlaging in suurstofdruk tot 6.7x10-9 atm het respektiewelike toenames in chroomoksied oplosbaarheid van 2.8 en 4.7 massa% veroorsaak. Eksperimentele resultate is vergelyk met waardes wat voorspel is deur die multifase ewewigsmodel (MPE), ontwikkel deur CSIRO, en goeie ooreenstemming is gevind. Verskillende slak basisiteite is nie eksperimenteel ondersoek nie en daarom is die model gebruik om die effek daarvan op die oplosbaarheid van chroomoksied in die vloeistoffase asook die stabiliteit van kristallyne fases te bepaal. By konstante temperatuur het ‘n toename in slak basisiteit ‘n afname in chroomoksied oplosbaarheid veroorsaak en die spinelfase gestabiliseer. Die aanbeveling is gemaak dat ‘n kombinasie van een of meer van vier hooffaktore, naamlik hoër bedryfstemperature en laer algehele chroomoksied konsentrasies, slak basisiteit en suurstofdruk, in die praktyk toegepas en geëvalueer moet word om sodoendeoptimum bedryfkondisies te bepaal. Die multifase ewewigsmodel is ‘n nuttige instrument wat gebruik kan word om die resultate van sulke ondersoeke te voorspel.
296

Reductive detoxification of hexavalent chromium and degradation of methyl tertiary butyl ether and phthalate esters

Xu, Xiangrong, 徐向榮 January 2005 (has links)
published_or_final_version / abstract / Ecology and Biodiversity / Doctoral / Doctor of Philosophy
297

CHROMIUM METABOLISM IN PREGNANCY.

Harrison, Cynthia Jean. January 1982 (has links)
No description available.
298

Microstructural characterisation and remanent creep life evaluation of a 12CrMoVNb steel

Chikwanda, Hilda Kundai January 1994 (has links)
No description available.
299

The transpassive behaviour of the anodic film on Fe-Cr alloys.

Tonkinson, Charles Henry Llewelyn. January 1993 (has links)
This work was undertaken to investigate the transpassive behaviour of the anodic film on two Fe-Cr alloys, namely Fe18Cr and Fe18Cr2Mo in acidic aqueous media in the pH range 0.5 to 3.8. Two electrochemical techniques were used, namely cyclic voltammetry and chronoamperometry. The two primary experimental variables in the cyclic voltammetric experiments were pH and sweep rate (2 - 800 mV/s). The main variables in the chronoamperometric experiments were the size of the potential step, the number of potential steps and the starting and ending potentials. Secondary experimental variables were temperature (25, 90°C), rotation rate (0, 150 rad/s), and the artificial addition of cations (Fe2+, Fe3+ and Cr3+) to some of the solutions. A voltammetric anodic peak, referred to as peak A, occurs in the transpassive region of the above Fe-Cr alloys, followed by a region of secondary passivity and then oxygen evolution. It was this peak that was investigated by cyclic voltammetric methods. The peak A current response was independent of rotation rate at pH 3.8 but was dependent on rotation rate at pH 0.5 with solutions of intermediate pH showing a gradual change in rotation rate dependence. This indicated a predominantly solid state process in less acidic solutions (pH 2.4 & 3.8) whereas in strongly acidic solutions (pH 0.5) the action of ions in solution must contribute significantly towards peak A processes. A method was developed to correct the peak A current response for the current due to oxygen evolution. The results of this method indirectly confirmed the hypothesis that more than one oxidation process contributes to the peak A current response. A diagnostic plot for diffusion control was applied to the peak height of peak A. The diagnostic involves plotting the peak height over the square root of the sweep rate versus the square root of the sweep rate. A process under diffusion control would give a horizontal line for this diagnostic plot. At pH 0.5 and at slow sweep rates (less than or equal to 60 mV/s) the diagnostic plot gave a positive deviation from the horizontal and this deviation was enhanced as the temperature was increased. As the pH was increased (towards pH 3.8), the deviation from the horizontal at slow sweep rates gradually became negative and this deviation was again enhanced when the temperature was increased. This phenomenon is explained in terms of the role of the hydronium ion. From the addition of Fe2+, Fe3+, and Cr3+ to pH 0.5 and pH 3.8 solutions it was noted that ferrous ions increased the peak A current response more than chromic ions of the same concentration. Ferric ions slightly decreased the peak A current response. Based on these results, reports in the literature, and the apparent role of the hydronium ion, a partial scheme was proposed in order to explain the role of Fe and Cr, from the alloy substrate, in the anodic film in the transpassive region. In chronoamperometric experiments, stepping to the transpassive region confirmed the phenomenon of the rising transient. A quantitative nucleation model - which was based on previous models from the literature - was generated. The model was successfully fitted to two rising transients, one from the pH 3.8, and the other from the pH 0.5 solution. The model also allows for the presence of a pre-existent laver at the starting potential of a chronoamperometric experiment after the electrochemical cleaning procedure. The model incorporates both diffusion controlled and charge transfer controlled steps. A key concept in the model is that of nucleation and "slow death" of corrosion pits growing into the electrode. "Death" of a pit occurs when it is covered by a nucleating and or growing passivating film. The rising transients were only obtained on Fe-Cr alloys (with one exception) when stepping to the transpassive region and also only in solutions where peak A was obtained in a cyclic voltammetric experiment. The exception to this was that in the pH 0.5 solution and at 90°C, rising transients were obtained when stepping to the passive region. This did not occur at 25°C. Rising transients were also obtained on pure iron when stepping to the passive region. In addition to the rising transient, a reverse rising transient was discovered. This reverse rising transient (which generated a cathodic current) was obtained when stepping the potential cathodically from the transpassive region. It was shown that the occurrence of the reverse rising transient was dependent on the presence of a stable, transpassive anodic film before the potential step. One indirect result from the discovery of the reverse rising transient was that it indicates that secondary passivity exists at least 200 mV into the oxygen evolution region. / Thesis (M.Sc.)-University of Natal, 1993.
300

Point defect properties in iron chromium alloys

Dogo, Harun 09 1900 (has links)
The behavior of Fe-Cr alloys under irradiation is in part controlled by the characteristics of point defects generated by high energy collision. Radiation enhanced diffusion and radiation induced precipitation are among the mechanisms that lead to changes in the microstructure under irradiation, and are thus controlling effects such as swelling and a' precipitation. Point defects in Fe-Cr alloys are diverse in nature due to their interaction with a variety of local solute configurations. Ab initio results indicate that the magnetic structure of the alloy is critical in determining its energetics. The ability to model these properties with classic potentials is still to be proven. In this work a detailed comparison between ab initio and classic values of a variety of point defects configurations is performed, testing in this way the extent to which classic potentials can be reliably used for radiation damage studies, and evaluating the dependence of point defect formation energies on Cr concentration.

Page generated in 0.0547 seconds