• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measurement of Phytase Activity in a Clymer Forest Soil Using the TInsP5 Probe

Huang, Zirou 26 August 2009 (has links)
Measurement of soil phytase activity (PA) and delineation of the impact of this important phosphomonoesterase on the P-cycling process in soil and sediments suffer from the lack of a reliable assay. A method for measuring PA in soil that promises to be accurate and reliable has been recently published. The method involves the use of a novel chromophoric analog of phytic acid, referred to as T(tethered)InsP5 (5-O-[6-(benzoylamino)hexyl]-D-myo-inositol-1,2,3,4,6-pentakisphosphate). This study was conducted to measure PA in a Clymer forest soil, which contained over twice the amount of soil organic C as previously tested soils, using the TInsP5 PA assay. This investigation specifically addresses: (1) the development of a soil dilution technique for determining maximal PA, (2) identification of previously unsubstantiated soil-produced dephosphorylated intermediate probe species, (3) the impact of increasing assay buffer pH on soil PA and (4) testing stability of the probe's amide bond in a highly (bio)active forest soil. PA assays were conducted by measuring dephosphorylation of TInsP5 in citrate-acetate buffered (pH 4.2) active and autoclaved (Control) soil suspensions. Phosphorylated probe intermediates (i.e., TInsP4, TInsP3, TInsP2 and TInsP1) and T-myo-inositol were extracted from samples of soil suspension following incubation. Probe species were quantified using reversed phase high-performance liquid chromatography (RPHPLC) with UV detection. PA was calculated based on a mass balance approach. A soil dilution technique was developed to address the challenge of determining maximal PA in soils containing higher organic matter content. In the initial report on use of the TInsP5 method for measuring PA in soil, two "soil-generated" UV-adsorbing compounds (designated Y and Z) were observed, but never confirmed as probe species. The experimental evidence presented in this report supports inclusion of compound Y as a phosphorylated probe intermediate species (i.e. TInsPy), based primarily on its UV adsorption spectra (diode-array detection analysis). Compound Z could not be substantiated as a probe species based on the evidence presented in this study. PA of Claymer forest soil decreased with an increase in assay buffer pH. Further, the probe's amide bond linkage was stable in a forest soil exhibiting high PA. / Master of Science
2

Exploring copper(I) and ruthenium(II) dyes for their use in dye-sensitised solar cells

Hewat, Tracy Elizabeth January 2013 (has links)
Dye design is one of the most important and challenging areas in dye-sensitised solar cell research. The purpose of the work in this thesis is to synthesise and characterise novel ruthenium(II) and copper(I) dyes that will provide insight into the number of binding groups required and the potential use of chromophoric ligands. A series of four simple Ru(II) dyes have been synthesised with the general formula Ru(4,4’- (R)-bipyridine)2(NCS)2 where R represents CH3 or CO2H. The study investigates the number of acid groups required to successfully bind to TiO2 whilst maintaining efficient charge injection. The series consists of one acid group, two acids, two acids on adjacent bipyridines, and three acids groups. Dye uptake was studied via optical waveguide spectroscopy, providing information on dye diffusion, adsorption and desorption kinetics, and surface coverage. Interestingly, the two acid groups on adjacent ligands suggested poor/slow binding to TiO2 surface and a high degree of dye aggregation in comparison to two acid groups on the same ligand. The dye with three binding groups showed strong adsorption to TiO2 and better dye coverage, resulting in a high efficiency. The complexes were all fully characterised by electrochemistry, photoluminescence, absorption spectroscopy, DFT calculations and solar cell performance testing. To date, there has been limited exploration of copper(I) complexes as potential alternatives to ruthenium(II) sensitisers, with even fewer publications reported for Cu(I) heteroleptic species. The neutral complexes that were synthesised are of the general formula: Cu(4,4’- (R)-6,6’-(CH3)-bipyridine)(β-diketonate) and Cu(4,4’-(R)-6,6’-(CH3)-bipyridine)(dipyrrin) where R represents CH3 or CO2Et. Additional blocking groups on the ligands are introduced to minimise structural change during oxidation or MLCT excitation. Improved stability and reproducibility have been shown for complexes containing the dipyrrin ligand, likely due to better steric constraints and better π-overlap with the bipyridine. There has also been a remarkable improvement in light absorption, from 450 nm to 600 nm. In-situ solar studies have been carried out on the Cu(4,4’-(R)-6,6’-(CH3)-bipyridine)(dipyrrin) series and a 0.41% efficiency has been achieved. Computational studies supports the experimental data in which the main transition appears to be ligand centred (dipyrrin) with a small MLCT contribution.
3

CAUSES AND CONSEQUENCES OF VARIATION IN UV TRANSPARENCY FOR FRESHWATER ECOSYSTEMS

Rose, Kevin C. 03 May 2011 (has links)
No description available.
4

Rôle des mécanismes biotiques et abiotiques dans la dynamique de la matière organique dissoute dans les écosystèmes marins pélagiques (Méditerranée Nord Occidentale) / The role of abiotic and biotic mechanisms controlling the dynamics of the dissolved organic matter in pelagic ecosystem (NW Mediterranean)

Sánchez-Pérez, Elvia Denisse 06 October 2015 (has links)
La matière organique dissoute chromophorique (CDOM) est une fraction significative du pool global de matière organique dissoute (MOD) dans les océans. La CDOM absorbe une partie de la lumière dans le domaine du rayonnement ultraviolet (UV-R) et du visible. Une fraction de cette CDOM peut émettre une fluorescence lorsqu'elle est excitée par un UV-R. Cette fraction est alors appelée matière organique dissoute fluorescente (FDOM). La CDOM a donc d'une part, un effet positif, en protégeant les cellules contre les dommages causés par les UV-R, mais d'autre part, un effet négatif en réduisant la quantité de radiation disponible pour la photosynthèse. Les propriétés optiques de la CDOM, particulièrement sensibles aux processus physiques (abiotiques) et biologiques (biotiques), renseignent sur l'intensité des processus biogéochimiques en milieux aquatiques. Des suivis de la dynamique de la CDOM en zones côtière et hauturière en Méditerranée Nord occidentale ont permis de décrire différentes tendances temporelles claires, qui vont d’une faible à une forte saisonnalité et qui peuvent être découplées des variations du pool global de MOD caractérisé par les concentrations en carbone organique dissous (COD). Dans les zones tempérées, les événements météorologiques conduisent à des changements beaucoup plus brusques dans la frange littorale que dans l’océan, où les variations tendent à être plus progressives au cours de l'année. En outre, l'apport de nutriments et de polluants dans les zones côtières est fortement influencé par l'activité anthropogénique et ces entrées ne suivent pas nécessairement de tendances saisonnières nettes. Dans la présente étude qui effectue un premier bilan de la distribution et du devenir de la CDOM/FDOM aux stations d'observation à long terme du laboratoire Arago (stations côtière SOLA et hauturière MOLA) à partir respectivement d'un suivi hebdomadaire et mensuel, nous nous sommes attachés à extraire un signal cohérent et une variabilité claire des sources des différentes fractions de la MOD entre février 2013 et avril 2014 ceci, de manière à mieux comprendre les rôles respectifs des facteurs biotiques et abiotiques. Nos observations ont ensuite pu être replacées dans un contexte synoptique d'évolution climatologique des écosystèmes méditerranéens. / Chromophoric dissolved organic matter (CDOM) is a major fraction of dissolved organic matter (DOM). CDOM absorbs light over a broad range of ultraviolet (UV-R) and visible wavelengths. A small fraction of CDOM can emit fluorescence when excited by ultraviolet radiation; so called fluorescent dissolved organic matter (FDOM). CDOM plays a key role in regulating light penetration into the ocean, absorbing high-energy electromagnetic spectrum (visible and ultraviolet light) waves. On one hand, it protects aquatic organisms of potential photo-damage; in the other hand it induces a negative effect by reducing light for photosynthesis. The optical properties of the CDOM are sensitive to biological (biotic) and physical (abiotic) processes and for this reason the colored matter can provide valuable information about the biogeochemical processes in aquatic environments. CDOM monitoring in Mediterranean coastal areas has shown different temporal trends, which go from weak to strong seasonality. Interestedly, these temporal trends were uncoupled with those of the total dissolved organic carbon. In temperate areas, episodic meteorological events can induce much more abrupt changes in the littoral than in the open sea, where changes tend to be more gradual along the year. In addition, the input of nutrients and pollutants in coastal areas is strongly influenced by the anthropogenic activity on land, and those inputs do not necessarily follow seasonal trends. In the present study, weekly and monthly samplings were performed to investigate the temporal variability in SOLA and MOLA stations, respectively. The fluctuation of different fractions of dissolved organic matter (DOM) was evaluated from February 2013 to April 2014 and referred to long time-frame databases of SOLA and MOLA stations. Inorganic nutrients and chlorophyll shown the classical seasonal patterns, with a winter period characterized by an enrichment of surface waters favoring the spring bloom, followed by a calm period that allows the summer stratification and the depletion of nutrients in the photic zone. The stratification extended until autumn winds and low temperatures eroded the thermocline. In contrast, colored DOM fractions did not follow a clear temporal trend. Interestingly, dissolved organic carbon (DOC) exhibited the highest variability in summer, when the rest of parameters showed minimum variations. To explain this mismatch we proposed a sequence of abiotic and biotic phenomena driving the DOC dynamics. In the suggested conceptual frame, DOC dynamics depended strongly on episodic meteorological events (winds, rains, etc.) along the year, except in summer, where the biological factors were more relevant. In order to better understand the influence of biological factors, we examined the temporal trends of phytoplankton composition in relation to those of the different colored DOM fractions. We found that both phytoplankton and CDOM were strongly influenced by abiotic factors such as the intrusions of fresh waters, the vertical mixing due to convection and the light exposure. However we did not find a correlation between any of the CDOM fractions and any of phytoplankton groups. In addition, we use the dust deposition database of ADEPT project (ICM-CSIC, Barcelona) to investigate the potential role of atmospheric deposition in the CDOM temporal variability, and also performed two dust addition experiments with natural plankton communities collected in the Catalan coast.

Page generated in 0.0529 seconds