• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational Analysis of Genome-Wide DNA Copy Number Changes

Song, Lei 01 June 2011 (has links)
DNA copy number change is an important form of structural variation in human genome. Somatic copy number alterations (CNAs) can cause over expression of oncogenes and loss of tumor suppressor genes in tumorigenesis. Recent development of SNP array technology has facilitated studies on copy number changes at a genome-wide scale, with high resolution. Quantitative analysis of somatic CNAs on genes has found broad applications in cancer research. Most tumors exhibit genomic instability at chromosome scale as a result of dynamically accumulated genomic mutations during the course of tumor progression. Such higher level cancer genomic characteristics cannot be effectively captured by the analysis of individual genes. We introduced two definitions of chromosome instability (CIN) index to mathematically and quantitatively characterize genome-wide genomic instability. The proposed CIN indices are derived from detected CNAs using circular binary segmentation and wavelet transform, which calculates a score based on both the amplitude and frequency of the copy number changes. We generated CIN indices on ovarian cancer subtypes' copy number data and used them as features to train a SVM classifier. The experimental results show promising and high classification accuracy estimated through cross-validations. Additional survival analysis is constructed on the extracted CIN scores from TCGA ovarian cancer dataset and showed considerable correlation between CIN scores and various events and severity in ovarian cancer development. Currently our methods have been integrated into G-DOC. We expect these newly defined CINs to be predictors in tumors subtype diagnosis and to be a useful tool in cancer research. / Master of Science

Page generated in 0.1223 seconds