• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 843
  • 261
  • 209
  • 72
  • 66
  • 49
  • 32
  • 26
  • 18
  • 12
  • 7
  • 6
  • 5
  • 5
  • 5
  • Tagged with
  • 1778
  • 670
  • 364
  • 288
  • 267
  • 253
  • 211
  • 190
  • 167
  • 164
  • 157
  • 154
  • 152
  • 150
  • 146
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
971

Chiralinių supramolekulinių tektonų, turinčių biciklo[3.3.1]nonano fragmentą, sintezė, struktūros ir asociacijos tyrimai / Synthesis, Structural and Association studies of Chiral Supramolecular Tectones Based on Bicyclo[3.3.1]nonane Framework

Bagdžiūnas, Gintautas 27 December 2012 (has links)
Supramolekulinė chemija – tyrimų kryptis, nagrinėjanti struktūras, sudarytas iš riboto ir neriboto skaičiaus molekulių (tektonų), sąveikaujančių tarpusavyje silpnosiomis nekovalentinėmis sąveikomis. Žinoma, kad medžiagų savybės užkoduotos ne tik molekulių struktūroje, bet ir jų tarpusavio išsidėstyme. Savo ruožtu, chirališkumas yra vienas iš faktorių, leidžiančių vienoms molekulėms atpažinti kitas. Pagrindiniai disertacijos tikslai: nustatyti 1) chiralinių, konformaciškai suvaržytų bei labilių junginių, turinčių biciklo[3.3.1]nonano fragmentą, chromoforų prigimties, tarpusavio orientacijos ir atstumo įtaką chiroptinėms savybėms, 2) chiralinių tripakeistų aromatinių, turinčių biciklo[3.3.1]nonano pakaitus, ir kompleksinių paladžiociklinių junginių chirališkumo ir struktūros įtaką formuojant įvairaus lygio tvarkias supramolekulines struktūras. Naudojantis apskritiminio dichroizmo spektroskopijair teoriškai atliktais ab initio skaičiavimais charakterizuotos molekulės, turinčios įvairios elektroninės prigimties chromoforus, bei jose vykstantys elektroniniai šuoliai. Susintetinti tripakeisti aromatiniai junginiai, turintys išorinius biciklo[3.3.1]nonano ir įvairių dydžių aromatinius fragmentus. Ištirta tokių save atpažįstančių chiralinių tripakeistų aromatinių junginių struktūros įtaka supramolekulinei asociacijai tirpale ir ant paviršiaus. Nustatyta, kad susintetinti V formos chiralinis ir raceminis dialkinbiciklo[3.3.1]nonenil- ligandai, turintys koordinuojantį piridino pakaitą... [toliau žr. visą tekstą] / The supramolecular chemistry of assemblies composed of a limited or infinite number of the molecular tectons interacting with each other via noncovalent interactions was investigated with a special emphasize on the chirality of the building blocks. The following objectives were pursued in this work: 1) to determine the electronic structure of both conformationally rigid and labile chiral bicyclo[3.3.1]nonane compounds, the mutual orientation and distance of the chromophores and its impact on chiroptical properties, 2) to study the influence of chirality and structure of palladacycle and trisubstituted compounds, containing external bicyclo[3.3.1]nonanyl- and aromatic fragments of different size on the formation of various supramolecular structures. The chiral bicyclo[3.3.1]nonane compounds with chromophores of different electronic nature were synthesized. The possibilities of exciton interaction and charge transfer phenomena were studied in the obtained molecules. The influence of chirality and structure of trisubstituted compounds containing external bicyclo[3.3.1]nonanyl- and aromatic fragments of different size on supramolecular association in solution and on the surface was investigated. In solution, the trisubstituted compounds exist in the form of nanoparticles with regular supramolecular structure. It was shown that the V-shaped chiral and racemic dialkynbicyclo[3.3.1]nonenyl- ligands having coordinating pyridine moiety, form rhomb-shaped palladacycle. The racemic and... [to full text]
972

PERIODIC MESOPOROUS ORGANOSILICA: PREPARATION CHARACTERIZATION AND APPLICATIONS OF NOVEL MATERIALS

DICKSON, STEVEN E 14 March 2011 (has links)
There is currently a great interest in the field of porous organosilica materials because of the high surface areas (> 1000 m²/g) and narrow pore size distributions which are beneficial for applications such as chromatography, chiral catalysis, sensing or selective adsorption. Periodic mesoporous organosilicas (PMOs) represent an interesting class of hybrid silica materials because of the wide variety of bridging organic groups which can be incorporated within the precursors [(OR)3Si-R-Si(OR)3] giving rise to materials with exceptional properties. We have synthesized and characterized various aromatic PMOs composed of supporting structural monomers (phenylene- or biphenylenebridged) and functional stilbene monomers (cis and trans) (1, 2). The effect of the different synthetic procedures and varying amounts of functional stilbene monomer on the properties of the materials was examined. The functional transstilbene component was determined to be well distributed in a phenylene-bridged PMO using P123 as a pore template from TEM techniques with Os staining. The trans-stilbene linkers were completely transformed to aryl aldehydes through ozonolysis with dimethylsulfide workup. Further transformation of the carbonyl functionality to an aryl imine showed a moderate level of success. Enantiomeric forms of a novel, chiral PMO precursor (CM) were synthesized and incorporated into biphenylene-bridged PMOs. Under basic pH conditions templated with C18TMACl, although very low levels of CM are incorporated, enantiomeric forms of chiral, porous materials are obtained as was verified by distinct mirror-image circular dichroism spectra. Powder XRD patterns suggest that a tightly packed asymmetric biphenylene arrangement may be necessary for the optical activity. Preliminary results using these materials as a chiral chromatographic phase are promising. Finally, a thin film morphology of an ethane-bridged PMO incorporating a thiol ligand, (3-mercaptopropyl)trimethoxysilane, was prepared on a fibre optic cable and used as a component in a heavy-metal sensing application. / Thesis (Ph.D, Chemistry) -- Queen's University, 2011-03-11 17:24:48.997
973

Structural and functional characterization of red kidney bean (Phaseolus vulgaris) proteins and enzymatic protein hydrolysates

Mundi, Sule 09 August 2012 (has links)
Kidney bean proteins and peptides can be developed to serve as an important ingredient for the formulation of high quality foods or therapeutic products that may positively impact on body function and human health. The main goal of this thesis was to determine the in vitro structural and functional characteristics of major proteins and enzymatic protein hydrolysate of red kidney bean (Phaseolus vulgaris). Selective aammonium sulfate precipitation of the kidney bean proteins yielded 88% globulin and 7% albumin.The globulin and albumin are glycoproteins that contained ~4% and 45% carbohydrate contents, respectively. Physicochemical and functional characteristics of the globulin fraction, such as, gelation concentration, foam stability, emulsion capacity, and emulsion stability were superior to those of albumin. Reducing SDS-PAGE revealed vicilin with molecular weight of ~45 kDa as the major globulin in kidney beans. Circular dichroism spectroscopy of the purified vicilin showed reductions in α-helix, and β-pleated sheet conformations upon addition of NaCl or changes in pH. Likewise, the tertiary structures as observed from the near-UV CD spectra were also changed by shifts in pH conditions and NaCl addition. Far UV-CD showed increased β-sheet content up till 60oC from room temperature, but a steady loss in the tertiary structure as temperature was further increased; however, β-sheet structure was still detectable at 80oC. Differential scanning calorimetry thermograms showed a prominent endothermic peak with denaturation temperature at around 90oC, attributed to thermal denaturation of vicilin. Alcalase hydrolysis of kidney bean globulin produced multifunctional peptides that showed potential antihypertensive properties because of the in vitro inhibition of activities of renin and angiotensin I converting enzyme as well as the antioxidant properties. The <1 and 5-10 kDa peptide fractions exhibited highest (p<0.05) renin inhibition and the ability to scavenge 2, 2-Diphenyl-1-picrylhydrazyl free radical, inhibit peroxidation of linoleic acid and reduce Fe3+ to Fe2+. Based on this study, incorporation of kidney bean globulin as an ingredient may be useful for the manufacture of high quality food products. Likewise, the kidney bean protein hydrolysates, especially the <1 kDa fraction represent a potential source of bioactive peptides for the formulation of functional foods and nutraceuticals.
974

Synthesis, Structural and Association studies of Chiral Supramolecular Tectones Based on Bicyclo[3.3.1]nonane Framework / Chiralinių supramolekulinių tektonų, turinčių biciklo[3.3.1]nonano fragmentą, sintezė, struktūros ir asociacijos tyrimai

Bagdžiūnas, Gintautas 27 December 2012 (has links)
The supramolecular chemistry of assemblies composed of a limited or infinite number of the molecular tectons interacting with each other via noncovalent interactions was investigated with a special emphasize on the chirality of the building blocks. The following objectives were pursued in this work: 1) to determine the electronic structure of both conformationally rigid and labile chiral bicyclo[3.3.1]nonane compounds, the mutual orientation and distance of the chromophores and its impact on chiroptical properties, 2) to study the influence of chirality and structure of palladacycle and trisubstituted compounds, containing external bicyclo[3.3.1]nonanyl- and aromatic fragments of different size on the formation of various supramolecular structures. The chiral bicyclo[3.3.1]nonane compounds with chromophores of different electronic nature were synthesized. The possibilities of exciton interaction and charge transfer phenomena were studied in the obtained molecules. The influence of chirality and structure of trisubstituted compounds containing external bicyclo[3.3.1]nonanyl- and aromatic fragments of different size on supramolecular association in solution and on the surface was investigated. In solution, the trisubstituted compounds exist in the form of nanoparticles with regular supramolecular structure. It was shown that the V-shaped chiral and racemic dialkynbicyclo[3.3.1]nonenyl- ligands having coordinating pyridine moiety, form rhomb-shaped palladacycle. The racemic and... [to full text] / Supramolekulinė chemija – tyrimų kryptis, nagrinėjanti struktūras, sudarytas iš riboto ir neriboto skaičiaus molekulių (tektonų), sąveikaujančių tarpusavyje silpnosiomis nekovalentinėmis sąveikomis. Žinoma, kad medžiagų savybės užkoduotos ne tik molekulių struktūroje, bet ir jų tarpusavio išsidėstyme. Savo ruožtu, chirališkumas yra vienas iš faktorių, leidžiančių vienoms molekulėms atpažinti kitas. Pagrindiniai disertacijos tikslai: nustatyti 1) chiralinių, konformaciškai suvaržytų bei labilių junginių, turinčių biciklo[3.3.1]nonano fragmentą, chromoforų prigimties, tarpusavio orientacijos ir atstumo įtaką chiroptinėms savybėms, 2) chiralinių tripakeistų aromatinių, turinčių biciklo[3.3.1]nonano pakaitus, ir kompleksinių paladžiociklinių junginių chirališkumo ir struktūros įtaką formuojant įvairaus lygio tvarkias supramolekulines struktūras. Naudojantis apskritiminio dichroizmo spektroskopijair teoriškai atliktais ab initio skaičiavimais charakterizuotos molekulės, turinčios įvairios elektroninės prigimties chromoforus, bei jose vykstantys elektroniniai šuoliai. Susintetinti tripakeisti aromatiniai junginiai, turintys išorinius biciklo[3.3.1]nonano ir įvairių dydžių aromatinius fragmentus. Ištirta tokių save atpažįstančių chiralinių tripakeistų aromatinių junginių struktūros įtaka supramolekulinei asociacijai tirpale ir ant paviršiaus. Nustatyta, kad susintetinti V formos chiralinis ir raceminis dialkinbiciklo[3.3.1]nonenil- ligandai, turintys koordinuojantį piridino pakaitą... [toliau žr. visą tekstą]
975

An investigation on the formation and occurrence of spiral grain and compression wood in radiata pine (Pinus radiata D. Don.)

Thomas, Jimmy January 2014 (has links)
Radiata pine (Pinus radiata) is the most important plantation tree in New Zealand forestry, and factors that reduce the quality of wood cause significant economic loss. Two of the most important of these issues are compression wood and spiral grain. Compression wood is a type of reaction wood, formed when a tree moves away from the vertical, and is characterised by biochemical and structural changes within the wood that reduce its quality and value. Spiral grain, however, is the alignment of the wood grain in a helix around the tree’s axis and away from the vertical. Again, this reduces the structural qualities of the wood and thus its value. Spiral grain and compression wood are notorious for their deleterious effect on the quality of wood produced and are very important for the forest industry due to the huge economic loss they cause. The demand for reliable tools to evaluate these wood quality issues in clonal planting material at an early stage, within 3 years of germination rather than at 8 to 15 years as in current practise, is of ever increasing importance from plant breeders and other industry stake holders. Therefore this research was undertaken with an overall aim to develop quick, easy and reproducible techniques to evaluate young radiata pine clones (up to 3 years old) based on compression wood content and presence of spiral grain. This is important because a shortened breeding cycle could provide significant economic benefits to the forest industry. The incidence of these commercially important wood quality parameters has been studied in this thesis in research conducted on young trees (1 to 3 years old). The research described in this thesis used a variety of different imaging approaches to investigate wood structure, including polarised light and confocal microscopy, and X-ray tomography and circular polarised light scanning. The images achieved have been analysed using a range of different software, including Photoshop, ImageJ and Matlab bringing a quantification approach to the imaging. Compression wood was quantified in young clonal material using images collected with a commercial document scanner, and processed using image analysis tools available in Photoshop. An easy, reliable and robust, automatic image analysis protocol was successfully developed and tested for the detection and quantification of compression wood in these young trees. This new technique to detect and quantify compression wood was based on the thresholding of the blue channel of the scanned RGB image as this was demonstrated to contain the greatest image contrast. Development of this new technique may reduce the waiting time for screening clonal planting materials based on compression wood content. To understand the organisation of the grain at a cellular level within these young trees, confocal microscopy techniques were utilised. The cell wall characteristics and fluorescence properties of compression wood in comparison with normal wood were investigated using a new cellulose specific dye, pontamine fast scarlet 4B. Staining protocols for this dye for confocal microscopy were optimised, and the potential of measuring the microfibril angle of the S1 and S3 layers of the pontamine treated opposite wood was demonstrated through either direct observations of these layers, or through the property of bifluorescence where the dye is excited only when aligned parallel to the polarisation of the incident light. Despite extensive work with confocal microscopy, this technique proved to be unsuitable for investigations of spiral grain because although it provided cellular detail, imaging was limited to the surface layers of sections, and the area over which observations were required was prohibitive. Instead of confocal microscopy, the incidence of spiral grain in young stems was investigated in two completely new ways. Resin canals, which are formed from the same cambial initials as the tracheids and which align with the grain, were used as a proxy to demonstrate the grain changes. A novel technique, using circular polarised light and a professional flatbed scanner, was developed to image whole serial transverse sections of the young stems to detect the resin canals. Using ImageJ, the number and location of resin canals was measured on vertical controls, and trees that had been rocked and leaned. The number and frequency of resin canals were less in tilted trees, especially in compression wood, compared to the higher number of canals formed in the rocked trees. More importantly, a combination of serial sectioning and this approach allowed a 3-dimensional view of the orientation of resin canals inside a stem to be generated with ImageJ, and the angles of these canals could be measured using Matlab. The resin canals were oriented with a left-handed spiralling near the stem surface whereas the canals near to the pith were nearly straight, consistent with previous observations of the development of spiral grain in radiata pine. However, it was observed that while vertical trees had a symmetric pattern of grain and grain changes around the stem, this was not the case in tilted trees. In these, the opposite wood often had severe spiral grain visible through formation of twist whereas the compression wood formed on the lower side had bending. Consistent with this, grain associated with compression wood was significantly straighter than in opposite wood. This hitherto unknown link between the incidence of compression wood and spiral grain was investigated and explained on the basis of the characteristics of resin canals in these types of wood. X-ray micro-tomography was also used to investigate resin canals in the stubs from which serial sections were collected. The 3D reconstructions of the resin canals showed exactly the same patterns as observed by polarised light scanning.
976

The Hydrodynamic Effects of Long-line Mussel Farms

Plew, David Russell January 2005 (has links)
The hydrodynamic effects of long-line mussel farms are studied through a two-pronged approach. Large-scale hydrodynamic effects are investigated through the use of field measurements, primarily at a large mussel farm in Golden Bay, New Zealand (230 long-lines, covering an area of 2.45 km by 0.65 km). The research focuses on three areas: the effect of the farm on currents, mixing and stratification, and the dissipation of wave energy. Measurements are also made of the forces on long-line anchor ropes, and a limited investigation is made of phytoplankton depletion. The second approach is the use of laboratory drag measurements and Particle Tracking Velocimetry (PTV) to study the effect of mussel dropper (vertical lengths of mussel-encrusted crop rope) roughness and spacing on flow at small scales. These experiments provide data on very rough cylinders, and on cylinder arrays. The field measurements show that the local effects of mussel farms on currents are significant, but that magnitudes of the effects depend on dropper density, mussel sizes, orientation of the long-lines to the flow, and other parameters that are necessary to characterise the complex interactions between a farm and the flow. The drag on the submerged structures reduces water velocities within the Golden Bay farm by between 47% and 67%. Mussel farms present a porous obstacle to the flow, and flow that does not pass through the farm must be directed around or beneath it. The field measurements indicate that at the study site, most of the flow is diverted around the farm despite its large horizontal dimensions. The droppers at the study site extend over most of the water column (average dropper length ~ 8 m, average water depth ~ 11 m), providing a restriction to the flow beneath the farm. The strength of the density stratification may also favour a horizontal diversion. The flow around the farm is essentially two-dimensional. This suggests that two-dimensional numerical models should be sufficient to obtain reasonable predictions of the velocity drop within, and the diversion around, mussel farms. A simple two-dimensional pipe-network model gives reasonable estimates of the velocity within the farm, demonstrating that the drag of the farm may be adequately parameterised through local increases of bed friction. A wake in the form of reduced velocities extends downstream of the farm, and a mixing layer analogy suggests that this wake spreads slowly. The downstream extent of the wake cannot be determined, although it is likely to be limited by the tidal excursion. The degree of vertical mixing caused by the flow through a mussel farm cannot be quantified, although there are clear interactions between the stratification and the farm. Two mixing mechanisms are considered. A shear layer is generated beneath the farm due to the difference in velocities between the retarded flow within the farm and the flow beneath. Shear layers beneath mussel farms are likely to be weak unless the ambient currents are strong. It will be necessary for stratification to be weak or non-existent for this mechanism to generate significant mixing. The second mechanism is smaller-scale turbulence generated by the mussel droppers. Although the efficiency of this form of mixing is likely to be low, the large number of mussel droppers suggests that there will be some enhancement of vertical mixing. Frequency-dependent wave attenuation is recorded, and is predicted with some success by an analytical model. Both the model and the field data show that wave dissipation increases as the wave period decreases. Wave energy dissipation at the study site averages approximately 10%, although the measurements are made during a period of low wave heights (Hs < 0.25 m). Measurements of long-line anchor rope tension at two study sites indicate that the loadings are induced by the tide, currents, and waves. Dynamic wave loadings may be significant, and higher wave forces are measured at the offshore end of a long-line. The issue of seston or phytoplankton depletion is considered briefly through the examination of fluorescence, turbidity, and acoustic backscatter data. Although the results are consistent with a reduction of seston within the farm, differences between the inside and outside of the farm are not statistically significant. Mussel droppers resemble extremely rough circular cylinders, with the mussel shells forming the surface roughness elements. Drag measurements and PTV flow visualisation are used to investigate the importance of the large surface roughness, and the influence of dropper spacing and long-line orientation on flow. Drag measurements conducted with smooth and rough cylinders show that high surface roughness (ks/D ~ 0.092) has little effect on the drag coefficient of single cylinders in the range 4,000 < Re < 13,000, yet increases the drag coefficient of a row of cylinders normal to the flow. High surface roughness on single cylinders has the effect of shortening the near-wake region, increasing the peak turbulent kinetic energy (TKE) behind the cylinder, and decreasing the Strouhal number (St = 0.21, 0.19, 0.17 for ks/D = 0, 0.048, and 0.094 respectively). Arrays of rough cylinders (ks/D = 0.094) demonstrate similar flow characteristics to those of smooth cylinders. At cylinder spacings of S/D < 2.2, the surface roughness acts to favour the formation of a particular metastable wake pattern, whereas different metastable wake patterns are formed each run behind the smooth cylinders. The experiments show that the drag on single row arrays of cylinders are related to the cylinder spacing (increasing drag with decreasing spacing), and the drag also varies with the sine of the angle to the flow, except where the array is at low angles to the flow. The PTV measurements provide new data regarding the two-dimensional distributions of velocity, TKE, and turbulence statistics behind the cylinder arrays.
977

Structural and functional characterization of red kidney bean (Phaseolus vulgaris) proteins and enzymatic protein hydrolysates

Mundi, Sule 09 August 2012 (has links)
Kidney bean proteins and peptides can be developed to serve as an important ingredient for the formulation of high quality foods or therapeutic products that may positively impact on body function and human health. The main goal of this thesis was to determine the in vitro structural and functional characteristics of major proteins and enzymatic protein hydrolysate of red kidney bean (Phaseolus vulgaris). Selective aammonium sulfate precipitation of the kidney bean proteins yielded 88% globulin and 7% albumin.The globulin and albumin are glycoproteins that contained ~4% and 45% carbohydrate contents, respectively. Physicochemical and functional characteristics of the globulin fraction, such as, gelation concentration, foam stability, emulsion capacity, and emulsion stability were superior to those of albumin. Reducing SDS-PAGE revealed vicilin with molecular weight of ~45 kDa as the major globulin in kidney beans. Circular dichroism spectroscopy of the purified vicilin showed reductions in α-helix, and β-pleated sheet conformations upon addition of NaCl or changes in pH. Likewise, the tertiary structures as observed from the near-UV CD spectra were also changed by shifts in pH conditions and NaCl addition. Far UV-CD showed increased β-sheet content up till 60oC from room temperature, but a steady loss in the tertiary structure as temperature was further increased; however, β-sheet structure was still detectable at 80oC. Differential scanning calorimetry thermograms showed a prominent endothermic peak with denaturation temperature at around 90oC, attributed to thermal denaturation of vicilin. Alcalase hydrolysis of kidney bean globulin produced multifunctional peptides that showed potential antihypertensive properties because of the in vitro inhibition of activities of renin and angiotensin I converting enzyme as well as the antioxidant properties. The <1 and 5-10 kDa peptide fractions exhibited highest (p<0.05) renin inhibition and the ability to scavenge 2, 2-Diphenyl-1-picrylhydrazyl free radical, inhibit peroxidation of linoleic acid and reduce Fe3+ to Fe2+. Based on this study, incorporation of kidney bean globulin as an ingredient may be useful for the manufacture of high quality food products. Likewise, the kidney bean protein hydrolysates, especially the <1 kDa fraction represent a potential source of bioactive peptides for the formulation of functional foods and nutraceuticals.
978

Comparing measures of fit for circular distributions

Sun, Zheng 04 May 2010 (has links)
This thesis shows how to test the fit of a data set to a number of different models, using Watson’s U2 statistic for both grouped and continuous data. While Watson’s U2 statistic was introduced for continuous data, in recent work, the statistic has been adapted for grouped data. However, when using Watson’s U2 for continuous data, the asymptotic distribution is difficult to obtain, particularly, for some skewed circular distributions that contain four or five parameters. Until now, U2 asymptotic points are worked out only for uniform distribution and the von Mises distribution among all circular distributions. We give U2 asymptotic points for the wrapped exponential distributions, and we show that U2 asymptotic points when data are grouped is usually easier to obtain for other more advanced circular distributions. In practice, all continuous data is grouped into cells whose width is decided by the accuracy of the measurement. It will be found useful to treat such data as grouped with sufficient number of cells in the examples to be analyzed. When the data are treated as grouped, asymptotic points for U2 match well with the points when the data are treated as continuous. Asymptotic theory for U2 adopted for grouped data is given in the thesis. Monte Carlo studies show that, for reasonable sample sizes, the asymptotic points will give good approximations to the p-values of the test.
979

Protein production and purification in structural genomics

Hammarström, Martin January 2006 (has links)
The number of gene products available for structural and functional study is increasing at an unprecedented rate as a result of the successful whole genome sequencing projects. Systematic structure determination of proteins on a genomic scale, called structural genomics, can significantly contribute to the field of protein science and to functional annotation of newly identified genes. This thesis covers different aspects of protein production in Eschericiha coli for structural studies in the context of structural genomics. Protocols have been downscaled and standardized to allow for a rapid assessment of the production characteristics for multiple proteins in parallel under a number of different conditions. Foremost, the ability of different proteins and peptide tags to affect the solubility of the recombinant protein when produced as fusion proteins has been systematically studied. Large differences in the success-rate for production of soluble protein in E. coli were found depending on the fusion partner used, with a more than two-fold increase in the number of proteins produced as soluble when comparing the best and the poorest fusion tags. For different constructs with a histidine tag, commonly used to facilitate protein purification, large differences in yield depending on the design of the expression vector were found. When comparing different fusion proteins produced from identical expression vectors, fusions to the GB1 domain were found to result in the highest yield of purified target protein, on average 25 % higher than any of the other fusions. The suitability for further structural studies was tested at an intermediate scale for proteins that were identified as soluble in the expression screening. For this purpose, protocols for rapid purification and biophysical characterization using nuclear magnetic resonance and circular dichroism spectroscopy were developed and tested on 19 proteins, of which four were structured. / QC 20100826
980

Saving the world - One truck at a time : A case study at Volvo Trucks on reducing the packaging waste through circular economy

Orrefalk, Amanda, Nedström, Charlotta January 2018 (has links)
The production and consumption of today generates huge amounts of waste, and due to the increasing living standards the amount will continue to increase. The waste leads to large environmental impacts due to pollution and emissions of greenhouse gases, as well as the depletion of raw materials. This study aimed to investigate how sustainability through circular economy can drive the development towards reducing the packaging waste in a company. The ambition was to identify possible actions that could be implemented in order to decrease the amount of combustible waste and the entailed environmental impact. A case study was performed at Volvo Group Trucks Operations assembly plant in Tuve in Gothenburg. The initial part of the study consisted of a literature review and was followed by the empirical study where interviews and observations were conducted in order to investigate what actions that could reduce the packaging waste. The data was analysed and one action was selected to be further investigated, and calculations of its environmental and economic aspects are performed. Three different types of inner packaging of LDPE (Low Density Polyethelen) plastics were selected, and the calculations showed that the reduction of CO2-emissions amounts to as much as 6.3 tonnes per year and cost savings of 11 000 SEK per year when reusing the inner packaging. These savings indicate that it is profitable to return the packaging to the supplier if it is located closer than 10 200 - 16 600 km to the site. The managerial implications of implementing a returnable packaging system are the cost savings and the reduction of environmental impacts. / Produktioner och konsumtion genererar idag stora mängder avfall och på grund av den ökande levnadsstandarden fortsätter mängden avfall att öka. Avfallet leder till stor miljöpåverkan på grund av föroreningar och växthusgasutsläpp, liksom uttömning av råmaterial. Denna studien syftade till att undersöka hur hållbarhet genom cirkulär ekonomi kan driva utvecklingen mot att minska förpackningsavfallet i ett företag. Ambitionen var att identifiera möjliga förslag som skulle kunna implementeras för att minska mängden av brännbart avfall och därmed den miljöpåverkan som följer. En fallstudie utfördes på Volvo Group Trucks Operations monteringsanläggning i Tuve i Göteborg. Den inledande delen i arbetet bestod av en litteraturstudie som följdes av en empirisk studie, där intervjuer och observationer utfördes för att undersöka vilka förslag som skulle kunna minska förpackningsavfall. Datan analyserades och ett förslag valdes ut för att undersökas vidare genom beräkningar för dess miljömässiga och ekonomiska aspekter. Tre olika typer av inneremballage av LDPE-plast valdes ut och beräkningarna visade att reduceringen av CO2-utsläpp uppgick till 6,3 ton per år och kostnadsbesparingarna till 11 000 SEK per år då inneremballage återanvänds. Dessa besparingar indikerar att det är lönsamt att returnera förpackningar till leverantören om den är belägen närmare än 10 200- 16 600 km från fabriken. Incitament för företag att implementera ett retursystem är de minskade kostnaderna samt den minskade miljöpåverkan.

Page generated in 1.0917 seconds