• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Attainability of Upper Bounds for the Circular Chromatic Number of <em>K</em><sub>4</sub>-Minor-Free Graphs.

Holt, Tracy Lance 03 May 2008 (has links) (PDF)
Let G be a graph. For k ≥ d ≥ 1, a k/d -coloring of G is a coloring c of vertices of G with colors 0, 1, 2, . . ., k - 1, such that d ≤ | c(x) - c(y) | ≤ k - d, whenever xy is an edge of G. We say that the circular chromatic number of G, denoted χc(G), is equal to the smallest k/d where a k/d -coloring exists. In [6], Pan and Zhu have given a function μ(g) that gives an upper bound for the circular-chromatic number for every K4-minor-free graph Gg of odd girth at least g, g ≥ 3. In [7], they have shown that their upper bound in [6] can not be improved by constructing a sequence of graphs approaching μ(g) asymptotically. We prove that for every odd integer g = 2k + 1, there exists a graph Gg ∈ G/K4 of odd girth g such that χc(Gg) = μ(g) if and only if k is not divisible by 3. In other words, for any odd g, the question of attainability of μ(g) is answered for all g by our results. Furthermore, the proofs [6] and [7] are long and tedious. We give simpler proofs for both of their results.

Page generated in 0.034 seconds