Spelling suggestions: "subject:"circulation""
221 |
Circulating miRNAs in myalgic encephalomyelitis : chronic fatigue syndromeNepotchatykh, Evguenia 08 1900 (has links)
L'encéphalomyélite myalgique (EM) est une maladie chronique complexe et hétérogène dont l'étiologie et la physiopathologie restent mal comprises. Cette maladie comporte une multitude de symptômes et se caractérise par une fatigue constante inexpliquée, non soulagée par le repos et un malaise post-effort (MPE), qui se traduit par une aggravation des symptômes à la suite d’une activité physique ou cognitive minimale. Bien que le MPE soit le symptôme caractéristique de l'EM, plusieurs symptômes peuvent varier au fil du temps selon les personnes affectées en termes de fréquence et d'intensité. Environ 60 % des personnes atteintes d'EM souffrent d’une dysautonomie, plus fréquemment d’une intolérance orthostatique (IO) et, souvent, d’un syndrome de tachycardie orthostatique posturale (STOP). L’IO et le STOP sont déclenchés par un changement de position de couché à debout et sont aggravés par le MPE. Les patients gravement atteints par l’EM sont confinés à la maison et souvent cloués au lit. L'EM est une maladie qui affecte globalement des millions de personnes, incluant plus de 500,000 Canadiens. Cependant, le nombre de personnes souffrant de cette maladie pourrait en fait être une sous-représentation de la réalité car environ 84 à 91 % d’entre elles ne sont toujours pas diagnostiquées. Le diagnostic de l’EM est difficile en raison du manque de biomarqueurs validés et du chevauchement dans les symptômes avec d'autres maladies telles que la fibromyalgie (FM). La FM est une autre maladie chronique dont l'étiologie demeure inconnue avec une prévalence d'environ 2 à 3 % de la population et présente plusieurs symptômes en commun avec l'EM, tels que la fatigue, les problèmes de sommeil et les troubles cognitifs. Alors que l'EM est davantage caractérisée par la MPE, la FM est associée aux douleurs chroniques, à un faible seuil de douleur et à une sensibilité musculaire.
Avec des preuves à l’appui et compte tenu de la nature hétérogène de l’EM, il est reconnu que la pathogénèse de cette maladie est le résultat d’une combinaison de facteurs. D’abord, il y a les prédispositions génétiques, car souvent plusieurs membres de la famille sont atteints. Ensuite, il y a les expositions environnementales telles que les toxines, les moisissures, l’exposition aux métaux lourds (mercure, arsenic, etc.). De plus, les infections par des agents pathogènes viraux (H1N1, EBV, etc.) ou bactériens (Borrelia burgdorferi), ainsi que des stress majeurs peuvent jouer un rôle comme agent déclencheur dans la maladie.
Les microARN (miARN) sont une classe de petits ARN non codants qui possèdent la capacité de réguler l'expression de plusieurs gènes et ont donc un impact considérable sur les fonctions physiologiques. Il est important de noter que l’expression de nombreux miARN est modulée par les facteurs génétiques, épigénétiques et environnementaux. Nous proposons que les miARN jouent un rôle dans la pathogenèse de l'EM en modulant plusieurs voies physiologiques dont la réponse au stress. L'objectif général de cette thèse était d'examiner le rôle des miARN dans la physiopathologie de l'EM et leur contribution dans la variabilité et à la gravité des symptômes.
Dans le premier article, nous avions pour objectif d’identifier les miARN impliqués dans l’EM. Ceci nous a conduit à découvrir 11 miARN circulants qui sont dérégulés et associés au MPE déclenché par l'application d'une provocation standardisée. Basé sur les changements d’expression de ces miARN après un stress appliqué provoquant un MPE chez les participants EM, nous avons pu créer un algorithme capable de différentier avec succès les individus EM des témoins sains. De plus, en utilisant le regroupement k-means, nous avons identifié quatre sous-groupes distincts de patients atteints d'EM présentant des profils de miARN et une gravité de la maladie différents.
Parmi les 11 miARN identifiés, l'expression dérégulé de hsa-miR-29a-3p, hsa-miR-150-5p et hsa-miR-374b-5p avait été précédemment associée à la FM dans la population norvégienne. L'objectif du deuxième article était d'évaluer les niveaux d'expression des 11 miARN associés à l'EM chez les patients atteints de FM ainsi que chez ceux présentant un diagnostic comorbide d'EM et de FM (EM+FM). Nous avons observé des signatures d'expression différentielles des 11 miARN entre les individus EM, FM et EM+FM. Ces résultats nous ont permis de développer un modèle de prédiction basé sur une approche d’apprentissage automatique, capable de différentier les maladies EM et FM.
L'un des miARN identifiés dans notre panel diagnostic d’EM, hsa-miR-150-5p, est prédit de réguler l'expression du gène SLC6A2 codant pour le transporteur de norépinephrine (NET). L’inactivation du transporteur NET a été mise en évidence par la découverte de mutations inactivatrices associées à une forme familiale rare de STOP ce qui n’est pas le cas pour la majorité des personnes atteintes de STOP. Néanmoins, chez ces personnes le niveau de la protéine NET et son expression sont souvent réduites. L'objectif du troisième manuscrit était d'étudier l'implication de miR-150-5p dans le STOP et IO survenant chez les personnes souffrant d'EM, EM+FM et STOP sans EM ni FM. Dans cette étude, nous avons confirmé une élévation du taux plasmatique de norépinephrine chez les participants atteints de STOP (avec et sans EM), suggérant une réduction de la protéine NET. Parmi les patients atteints d'EM avec STOP/IO et les patients STOP uniquement (sans EM), nous avons déterminé un mécanisme double par lequel le STOP est déclenché, centré sur deux profils distincts impliquant des taux plasmatiques faibles et élevés de miR-150-5p. Nous avons réalisé des expériences in vitro permettant de moduler les niveaux d’expression du miR-150-5p dans la lignée cellulaire SH-SY5Y, et mis en évidence une augmentation de l'expression du gène SLC6A2 suggérant un mécanisme indirect impliquant une réduction significative dans les niveaux de protéine EZH2, un puissant répresseur transcriptionnel de SLC6A2 et une autre cible confirmée de miR-150-5p.
Dans cette thèse, nous avons identifié un panel diagnostic constitué de 11 miARN circulants qui, grâce à une combinaison d'un test d'effort, peuvent aider au diagnostic des individus atteints d'EM et révéler de nouvelles informations sur la physiopathologie de l'EM. De plus, ce panel de miARN peut être utilisé pour différentier les conditions de EM, FM et EM+FM, ce qui est vital pour la compréhension de la physiopathologie de chaque maladie. Finalement, nous proposons un nouveau mécanisme par lequel l'altération de miR-150-5p peut déclencher le STOP/IO chez les individus atteints d'EM, EM+FM ainsi que chez ceux souffrant de STOP sans EM. Le diagnostic précis des individus à l'aide des miARNs en tant que biomarqueurs aidera à déterminer des mesures préventives, à établir des traitements efficaces et à identifier des cibles thérapeutiques pour la maladie EM par une manipulation directe ou indirecte de l'expression des miARN. / Myalgic encephalomyelitis (ME) is a complex chronic heterogeneous illness whose etiology and pathophysiology remain poorly understood. This disease has a multitude of symptoms, and it is characterised by unexplained constant fatigue unrelieved by rest and post-exertional malaise (PEM), which is reported as a worsening of symptoms following a minimal physical or cognitive activity. While PEM is the hallmark symptom of ME, some symptoms can vary overtime among affected individuals in frequency and intensity. About 60% of people with ME experience autonomic dysfunctions often refereed as dysautonomia and can result in orthostatic intolerance (OI) and in some cases in Postural Orthostatic Tachycardia Syndrome (POTS). Both OI and POTS are triggered by a change of position from supine to standing and are worsened by PEM. Severely affected patients are housebound and often bedridden. ME is common in all populations and it is known to affect over 500,000 Canadians. However, the number of people suffering from this disease may be in fact an underrepresentation of the reality because about 84-91% remain undiagnosed. Diagnosis is challenging due to a lack of validated biomarkers and overlap in symptoms with other diseases such as Fibromyalgia (FM). FM is another chronic illness with unknown etiology with a prevalence of about 2-3% of the population and has several common symptoms with ME such as fatigue, sleep problems and cognitive impairment. While ME is more characterised by PEM, FM is associated with more chronic pain, low pain threshold and muscle tenderness.
With supporting evidence and the heterogeneous nature of ME, it is evident that the pathophysiology of this disease includes a combination of factors. First of all, there are predisposing genetic factors since it is common to observe several affected family members. Then, there are environmental exposures such as toxins, mold, exposure to heavy metals (mercury, arsenic, etc.). In addition, viral pathogen infections (H1N1, EBV, etc.) or bacterial infections (Borrelia burgdorferi) as well as major stress can play a role as a triggering agent in the disease.
MicroRNAs (miRNAs) are a class small non-coding RNAs that possess the ability to regulate the expression of several genes and therefore greatly impact physiological functions. Of note, the expression of many miRNAs is modulated by genetic, epigenetic, and environmental factors. We propose that miRNAs play a role in the pathogenesis of ME by modulating several physiological pathways particularly in response to stress. The general objective of this thesis was to examine the role of miRNAs in the pathophysiology of ME and their contribution to symptom variability, and severity.
In firstly paper, we aimed to determine the miRNAs involved in ME disease. We have identified using microarray technology and confirmed by qPCR a panel of 11 circulating miRNAs that are deregulated and associated with PEM in response triggered by the application of a standardized provocation maneuver. Based on the changes of those miRNAs due to the applied stress test that provokes PEM in ME participants, we were able to create an algorithm capable of successfully differentiate ME individuals from healthy controls (HC). In addition, using k-means clustering, we have identified four distinct subgroups of ME patients with different miRNA profiles and severity of the disease.
Among the selected 11 miRNAs, hsa-miR-29a-3p, hsa-miR-150-5p and hsa-miR-374b-5p downregulated expression was previously associated with FM in the Norwegian population. The objective of the second paper was to investigate the expression levels of the 11 associated miRNAs with ME in FM patients as well as those with a comorbid diagnosis of ME and FM (ME+FM). We observed differential expression signatures of the 11 miRNAs between ME, FM and ME+FM individuals. These results prompted us to develop a prediction model based on machine learning approach, which can differentiate ME and FM illnesses.
One of the miRNAs identified in our ME diagnostic panel, hsa-miR-150-5p is predicted to regulate the expression of SLC6A2 gene encoding norepinephrine transporter (NET). Inactivation of NET transporter by mutations was discovered in rare familial form of POTS which is not the case for most people with POTS. Nevertheless, in these people the level of the NET protein and its expression are often reduced. The objective of the third manuscript was to investigate the implication of miR-150-5p in POTS and OI occurring in people suffering of ME, ME+FM and POTS without ME or FM. In this study, we confirmed an elevation of plasma norepinephrine in participants with POTS (with and without ME), suggesting a reduction in NET protein. Among ME patients with POTS/OI, and POTS-only patients (without ME), we determined a dual mechanism by which POTS is triggered centered on two distinct profiles involving low and high plasma miR-150-5p levels. We performed in vitro experiments and with modulation of miR-150-5p expression levels in SH-SY5Y cells line, we observe an increase in SLC6A2 expression, suggesting an indirect mechanism involving a significant reduction in levels of EZH2 protein, a powerful transcriptional repressor of SLC6A2 and another confirmed target of miR-150-5p.
In this thesis, we have identified a panel of circulating miRNAs, which in combination to a stress test, can aid in the accurate diagnosis of ME individuals and reveal new insights into the ME pathophysiology. In addition, this panel of miRNAs at baseline can be used to differentiate ME from FM or when it co-exists with the ME (ME+FM), which is crucial for understanding the pathophysiology of each illness. And finally, we propose a first mechanism by which alteration of miR-150-5p can trigger POTS/OI in individuals with ME, ME+FM as well as in those suffering of POTS without ME. The accurate diagnosis of individuals with the help of miRNAs as biomarkers will help to establish preventive measures, effective treatments, and therapeutic targets for ME disease by a direct or indirect manipulation of miRNA expression.
|
222 |
Разработка новых конструкций реверсивных шестеренных насосов для систем смазки возвратно-вращательных механизмов экскаваторов : магистерская диссертация / Development of new designs of reversible gear pumps for lubrication systems of return-rotational mechanisms of excavatorsЧибиров, А. Б., Chibirov, A. B. January 2019 (has links)
Диссертация на тему «Разработка новых конструкций реверсивных шестеренных насосов для систем смазки возвратно-вращательных механизмов экскаваторов» содержит 95 страниц текста, рисунков – 49, формул – 22, использованных источников – 18, иллюстрационный альбом, включающий 15 листов формата А1 графической части. Ключевые слова: системы смазки, реверсивные механизмы, реверсивный насос, шестеренный насос, консистентная смазка, циркуляционная смазка, карьерные экскаваторы, привод поворота, привод подъемной лебедки. Предмет исследования: проблемы систем смазки современных карьерных экскаваторов. Цель работы: разработка схемы и конструкции насоса, обеспечивающего бесперебойную подачу смазывающего вещества при постоянном реверсировании его ведущего вала. Итогом работы является разработка двух концептуальных вариантов шестеренного реверсивного насоса для узлов, совершающих возвратно-вращательные движений. Насосы могут работать от основного привода, без использования дополнительного двигателя. Так же в работе представлен пример использования данных насосов в узлах карьерного экскаватора ЭКГ-20, таких как редуктор подъемной лебедки и редуктор привода поворота с расчетом параметров насоса для последнего. В процессе работы над диссертацией была оформлена заявка на патент на полезную модель «Реверсивный шестеренный насос». Заявка зарегистрирована в Роспатенте с приоритетом от 23.04.2019. Регистрационный номер заявки 2019112339. / The dissertation on the theme "Development of new designs of reversible gear pumps for lubrication systems of return-rotational mechanisms of excavators" contains 95 pages of text, figures – 49, formulas – 22, used sources – 18, an illustrative album, including 15 sheets of A1 format of the graphic part. Key words: lubrication system, reversing mechanisms, a reversible pump, gear pump, grease lubrication, circulating lubrication, mining shovels, swing drive, the drive of the lifting winch. Subject of research: problems of lubrication systems of modern mining excavators. The purpose of the work: development of the scheme and design of the pump, ensuring uninterrupted supply of lubricant with constant reversal of its drive shaft. The result of the work is the development of two conceptual variants of the gear reversible pump for units performing reciprocating movements. Pumps can operate from the main drive, without the use of an additional engine. Also the paper presents an example of the use of these pumps at the nodes of a mining shovel EKG-20, such as reducer lift winch, and the gear drive rotation calculation of pump parameters for the latter. In the process of working on the thesis was issued a patent application for a utility model "Reversible gear pump". Application to patent with priority of 23.04.2019. Registration number of the application 2019112339. The practical usefulness of the work lies in the fact that this pump is ready for use in many areas of engineering, as shown by the example of mining equipment.
|
223 |
Engineering antibodies to study and improve immunomagnetic isolation of tumour cellsJain, Jayati January 2013 (has links)
Cell separation based on antibody-targeted magnetic beads has been widely used in a number of applications in immunology, microbiology, oncology and more recently, in the isolation of circulating tumour cells (CTCs) in cancer patients. Although other cell separation techniques such as size based cell filtration and Fluorescence Activated Cell Sorting have also been in popular use, immunomagnetic cell isolation possesses the advantages of high throughput, good specificity and reduced cell stress. However, certain fundamental features of the cell-bead interface are still unknown. In this study, some of the key features of the cell-bead synapse were investigated in an effort to improve the efficiency of immunomagnetic cell isolation and reduce its dependence on high expressing cell surface markers. A clinically relevant antibody fragment (Fab) against tyrosine kinase receptor HER2 was applied to study the immunomagnetic isolation of HER2 expressing cancer cells. First, the minimum number of target proteins required on a cell for it to be isolated was determined. Second, the importance of the primary antibody affinity was investigated, using a series of Fab mutants with known kinetics and it was shown that despite starting with sub-nanomolar affinity, improving Fab affinity increased cell isolation. Third, the influence of the connection between the primary antibody and the bead was studied by comparing Fab bridged to the magnetic bead via a secondary antibody, Protein L or streptavidin; the high affinity biotin-streptavidin linkage increased isolation sensitivity by an order of magnitude. Fourth, the effect of manipulating cytoskeletal polymerization and cell membrane fluidity using small molecules was tested; cholesterol depletion decreased isolation and cholesterol loading increased cell isolation. The insights from these observations were then applied to isolate a panel of cell lines expressing a wide range of surface HER2. While the standard approach isolated less than 10% of low HER2 expressing cancer cells from spiked rabbit and human blood, our enhanced approach with the optimized cholesterol level, antibody affinity and antibody-bead linkage could specifically isolate more than 80% of such cells. The final part of this work focussed on developing an antibody clamp that could physically restrict the antigen within its binding site on the Fab and prevent antigen dissociation, using the HER2-Fab complex and the anti-myc peptide antibody 9E10. Work from this thesis provides useful insights into the molecular and cellular parameters guiding immunomagnetic cell isolation and can be used to extend the range of target receptors and biomarkers for tumour cell isolation and other types of cell separation, thereby enhancing the power and capacity of this approach.
|
224 |
Provoz otopných těles / Working of radiatorsMašek, Miroslav January 2022 (has links)
This diploma thesis deals with the operation of radiators. It is divided into three parts. The first part describes the various types of radiators and heating surfaces, radiator control and heat measurement, the second part deals with the design of heating and hot water in an apartment building in Brno in two variants of the conceptual solution and the third part is processed in the form of experimental measurements issues of radiator operation during a real day in the heating season and operating conditions that may occur.
|
225 |
Untersuchung des Modularen Mehrpunktstromrichters M2C für MittelspannungsanwendungenRohner, Steffen 07 June 2011 (has links) (PDF)
Die vorliegende Arbeit behandelt den Modularen Mehrpunktstromrichter M2C, der eine aufstrebende Mehrpunktstromrichtertopologie im Mittelspannungs- und Hochspannungsbereich ist. Die modulare Struktur des Stromrichters enthält in einem Stromrichterzweig eine Reihenschaltung aus identischen Submodulen (Zellen) und einer Spule. Der gesamte Stromrichter ist aus sechs Zweigen aufgebaut. Somit hängt die Anzahl der Spannungsstufen in den Leiter-Leiter-Spannungen von der zunächst beliebigen Anzahl der Submodule ab.
Zur Untersuchung dieser komplexen Stromrichtertopologie werden zwei Simulationsmodelle hergeleitet: das kontinuierliche Modell und das diskrete Modell. Dafür wird das elektrische Schaltbild durch ein gewöhnliches Differenzialgleichungssystem beschrieben, wobei die Schaltzustände der Leistungshalbleiter durch sogenannte Schaltfunktionen abgebildet werden. Das kontinuierliche Modell verwendet Schaltfunktionen, die Werte in einem kontinuierlichen Intervall annehmen können. Bei Vorgabe der Zweigströme und Sternpunktspannung können die Lösungen der anderen Systemgrößen analytisch berechnet werden. Für den allgemeinen Fall ist dies numerisch möglich. Im Gegensatz dazu verwendet das diskrete Modell diskrete Schaltfunktionen. Es wird durch numerische Integrationsverfahren mit dem Schaltungssimulator MATLAB/Plecs simuliert.
Eine spezielle Eigenschaft dieses Stromrichters sind seine inneren, an den Ein- und Ausgangsklemmen nicht messbaren Ströme: die sogenannten Kreisströme. Diese Stromanteile werden erstmalig mathematisch im Zeitbereich definiert und die Harmonischen hergeleitet, die sich für einen symmetrischen Betrieb des Stromrichters ergeben. Für das diskrete Modell wird eine Zweigstromregelung implementiert. Die Anfangswerte der Spulen und Kondensatoren werden durch die analytischen Gleichungen des kontinuierlichen Modells so berechnet, dass sich der eingeschwungene Zustand ergibt. Der M2C besitzt keinen großen, sondern viele verteilte Energiespeicher: die Submodulkondensatoren. Die gespeicherte Energie sollte symmetrisch verteilt sein. Dafür werden drei Möglichkeiten der Energieänderung hergeleitet und deren Effektivität gezeigt. Eine andere Untersuchung betrifft die Stromaufteilung innerhalb der Submodule auf den jeweils oberen und unteren Leistungshalbleiter. Dabei wird die Stromaufteilung für verschiedene Phasenwinkel und Kreisströme gezeigt. Der Einfluss der schwankenden Kondensatorspannungen auf die Leiter-Leiter-Spannungen sowie die Anzahl der Spannungsstufen in den Leiter-Leiter-Spannungen werden mit dem diskreten Modell untersucht.
Die Genauigkeit der Simulationsmodelle wird mit Hilfe eines Prototyps des M2Cs überprüft, der von der Fa. Siemens entwickelt wurde. Es werden charakteristische Strom- und Spannungsverläufe gemessen und den simulierten Verläufen der beiden Simulationsmodelle gegenübergestellt.
Die Auslegung des Leistungsteils gliedert sich in die Auslegung der Submodulkondensatoren und die der Leistungshalbleiter. Zuerst wird die Kapazität der Submodulkondensatoren auf der Grundlage von drei verschiedenen Kondensatorspezifikationen mit Hilfe eines iterativen Algorithmus minimiert. Dies wird sowohl für kreisstromfreie als auch für optimierte kreisstrombehaftete Betriebsweisen mit dem kontinuierlichen Modell durchgeführt. Im nächsten Schritt werden die Leistungshalbleiter mit dem diskreten Modell dimensioniert. Dafür wird ein Stromfaktor definiert, der eine ideale Parallelschaltung von mehreren Leistungshalbleitern beschreibt. Die Verluste, die Verlustverteilung sowie die Sperrschichttemperaturen in den Leistungshalbleitern für verschiedene Phasenwinkel zeigen das Verhalten des Stromrichters in verschiedenen Arbeitspunkten. / This thesis deals with the Modular Multilevel Converter M2C, an emerging and highly attractive multilevel converter topology for medium and high voltage applications. One of the most significant benefits of the M2C is its modular structure - the converter is composed of six converter arms, where each arm consists of a series connection of identical submodules (cells) and an inductor. Thus, the number of distinct voltage levels available for the line-to-line voltages is proportional to the number of submodules, which is in principle arbitrary.
For the investigation of this complex converter topology, two simulation models - a continuous model and a discrete model - are derived. For this purpose, the electrical circuit is described by a system of ordinary differential equations where the switching states of the power semiconductors are represented by the so-called switching functions. The continuous model results from the analytical solution of the differential equations with a continuous interpretation of the switching functions. In contrast, the discrete model uses discrete switching functions and is computed using numeric integration methods with MATLAB/Plecs.
One aspect of particular significance with the M2C is the topic of inner currents: the so-called circulating currents. In this thesis, these current components are defined mathematically in the time domain for the first time and the harmonics of the circulating currents for symmetrical operation of the converter are derived. For the discrete model, closed-loop control of the arm currents is implemented. Initial values for the inductors and capacitors are derived using the analytical equations of the continuous model. The M2C has several distributed energy storage elements: the submodule capacitors. The stored energy must be distributed evenly amongst these capacitors. To achieve this, three methods of energy distribution are presented. Another focus of this investigation is the current sharing between the upper and lower power semiconductor within the submodules. For different load phase angles and circulating currents, the current distribution is depicted. The influence of the floating capacitor voltages on the line-to-line voltages as well as the of number of discrete voltage levels in the line-to-line voltages are investigated with the discrete model.
The accuracy of the simulation models is verified by experimentation with a prototype of the M2C from the company Siemens. The experimental results are compared with simulation results from the two simulation models.
The dimensioning of the power components of the elecrical circuit is divided into two parts: the first for the submodule capacitors and the second for the power semiconductors. Initially, the capacitance of the submodule capacitors are minimized by an iterative algorithm on the basis of three different capacitor specifications. This computation is done using the continuous converter model for converter operation neglecting circulating currents and with optimized circulating currents. In the next step, the power semiconductors are dimensioned using the discrete model and assuming a defined current factor, which describes the ideal parallel connection of several semiconductors. The losses, the loss distribution, and the junction temperatures in the power semiconductors for different load phase angles describe the behavior of the converter for different operating points.
|
226 |
Untersuchung des Modularen Mehrpunktstromrichters M2C für MittelspannungsanwendungenRohner, Steffen 25 February 2011 (has links)
Die vorliegende Arbeit behandelt den Modularen Mehrpunktstromrichter M2C, der eine aufstrebende Mehrpunktstromrichtertopologie im Mittelspannungs- und Hochspannungsbereich ist. Die modulare Struktur des Stromrichters enthält in einem Stromrichterzweig eine Reihenschaltung aus identischen Submodulen (Zellen) und einer Spule. Der gesamte Stromrichter ist aus sechs Zweigen aufgebaut. Somit hängt die Anzahl der Spannungsstufen in den Leiter-Leiter-Spannungen von der zunächst beliebigen Anzahl der Submodule ab.
Zur Untersuchung dieser komplexen Stromrichtertopologie werden zwei Simulationsmodelle hergeleitet: das kontinuierliche Modell und das diskrete Modell. Dafür wird das elektrische Schaltbild durch ein gewöhnliches Differenzialgleichungssystem beschrieben, wobei die Schaltzustände der Leistungshalbleiter durch sogenannte Schaltfunktionen abgebildet werden. Das kontinuierliche Modell verwendet Schaltfunktionen, die Werte in einem kontinuierlichen Intervall annehmen können. Bei Vorgabe der Zweigströme und Sternpunktspannung können die Lösungen der anderen Systemgrößen analytisch berechnet werden. Für den allgemeinen Fall ist dies numerisch möglich. Im Gegensatz dazu verwendet das diskrete Modell diskrete Schaltfunktionen. Es wird durch numerische Integrationsverfahren mit dem Schaltungssimulator MATLAB/Plecs simuliert.
Eine spezielle Eigenschaft dieses Stromrichters sind seine inneren, an den Ein- und Ausgangsklemmen nicht messbaren Ströme: die sogenannten Kreisströme. Diese Stromanteile werden erstmalig mathematisch im Zeitbereich definiert und die Harmonischen hergeleitet, die sich für einen symmetrischen Betrieb des Stromrichters ergeben. Für das diskrete Modell wird eine Zweigstromregelung implementiert. Die Anfangswerte der Spulen und Kondensatoren werden durch die analytischen Gleichungen des kontinuierlichen Modells so berechnet, dass sich der eingeschwungene Zustand ergibt. Der M2C besitzt keinen großen, sondern viele verteilte Energiespeicher: die Submodulkondensatoren. Die gespeicherte Energie sollte symmetrisch verteilt sein. Dafür werden drei Möglichkeiten der Energieänderung hergeleitet und deren Effektivität gezeigt. Eine andere Untersuchung betrifft die Stromaufteilung innerhalb der Submodule auf den jeweils oberen und unteren Leistungshalbleiter. Dabei wird die Stromaufteilung für verschiedene Phasenwinkel und Kreisströme gezeigt. Der Einfluss der schwankenden Kondensatorspannungen auf die Leiter-Leiter-Spannungen sowie die Anzahl der Spannungsstufen in den Leiter-Leiter-Spannungen werden mit dem diskreten Modell untersucht.
Die Genauigkeit der Simulationsmodelle wird mit Hilfe eines Prototyps des M2Cs überprüft, der von der Fa. Siemens entwickelt wurde. Es werden charakteristische Strom- und Spannungsverläufe gemessen und den simulierten Verläufen der beiden Simulationsmodelle gegenübergestellt.
Die Auslegung des Leistungsteils gliedert sich in die Auslegung der Submodulkondensatoren und die der Leistungshalbleiter. Zuerst wird die Kapazität der Submodulkondensatoren auf der Grundlage von drei verschiedenen Kondensatorspezifikationen mit Hilfe eines iterativen Algorithmus minimiert. Dies wird sowohl für kreisstromfreie als auch für optimierte kreisstrombehaftete Betriebsweisen mit dem kontinuierlichen Modell durchgeführt. Im nächsten Schritt werden die Leistungshalbleiter mit dem diskreten Modell dimensioniert. Dafür wird ein Stromfaktor definiert, der eine ideale Parallelschaltung von mehreren Leistungshalbleitern beschreibt. Die Verluste, die Verlustverteilung sowie die Sperrschichttemperaturen in den Leistungshalbleitern für verschiedene Phasenwinkel zeigen das Verhalten des Stromrichters in verschiedenen Arbeitspunkten.:Kurzbeschreibung i
Abstract iii
Danksagung v
Abbildungsverzeichnis xi
Tabellenverzeichnis xvii
Abkürzungsverzeichnis xix
0 Einleitung 1
1 Stand der Technik bei Mittelspannungsstromrichtern 3
1.1 Neutral-Point-Clamped Voltage Source Converter . . . . . . . . . . . . . . 5
1.2 Cascaded H-Bridge Voltage Source Converter . . . . . . . . . . . . . . . . 8
1.3 Flying Capacitor Voltage Source Converter . . . . . . . . . . . . . . . . . 10
2 Modularer Mehrpunktstromrichter 13
2.1 Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Prinzipielle Funktionsweise . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Spannungserzeugung durch die Submodule . . . . . . . . . . . . . 15
2.2.2 Symmetrierung der Kondensatorspannungen . . . . . . . . . . . . 16
2.2.3 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Strukturelle Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Vorteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Nachteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Motivation der Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Modellierung des Modularen Mehrpunktstromrichters 25
3.1 Verlust- und Sperrschichttemperaturberechnung von IGBT-Modulen . . . . 25
3.1.1 Stromfaktor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Verlustberechnung . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2.1 Durchlassverluste . . . . . . . . . . . . . . . . . . . . . 27
3.1.2.2 Schaltverluste . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Thermisches Ersatzschaltbild . . . . . . . . . . . . . . . . . . . . . 30
3.2 Modellierung eines Antriebs mit Modularem Mehrpunktstromrichter . . . . 31
3.2.1 Schaltungsmodell mit einem Submodul pro Zweig . . . . . . . . . 31
3.2.2 Differenzialgleichungssystem für das Schaltungsmodell mit einem
Submodul pro Zweig . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Das diskrete Modell . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 Das kontinuierliche Modell . . . . . . . . . . . . . . . . . . . . . . 37
4 Analyse und Simulation des Modularen Mehrpunktstromrichters 43
4.1 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.1 Definition der Kreisströme . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 Harmonische der Kreisströme für den symmetrischen Betrieb . . . 45
4.2 Verfahren zur Erzeugung der Schaltsignale des diskreten Modells . . . . . . 49
4.3 Annahmen für die Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Daten des exemplarischen Simulationsmodells . . . . . . . . . . . 54
4.3.2 Anfangswertbestimmung . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2.1 Spulenströme . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2.2 Kondensatorspannungen . . . . . . . . . . . . . . . . . . 58
4.4 Analyse der Simulationsergebnisse . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Verläufe charakteristischer Stromrichtergrößen . . . . . . . . . . . 61
4.4.2 Vergleich des kontinuierlichen und des diskreten Modells . . . . . . 69
4.4.3 Möglichkeiten der Verschiebung der gespeicherten Energie der Submodulkondensatoren
. . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.3.1 Änderung der gespeicherten Energie einer Stromrichterphase
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.3.2 Verschiebung der gespeicherten Energie innerhalb einer
Stromrichterphase . . . . . . . . . . . . . . . . . . . . . 86
4.4.3.3 Änderung der gespeicherten Energien unter Verwendung
der Sternpunktspannung . . . . . . . . . . . . . . . . . . 94
4.4.4 Stromaufteilung innerhalb der Submodule . . . . . . . . . . . . . . 95
4.4.5 Einfluss der schwankenden Kondensatorspannungen auf die Leiter-
Leiter-Spannungen . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5 Messtechnische Überprüfung der Simulationsmodelle 109
5.1 Versuchsaufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Messergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2.1 Modularer Mehrpunktstromrichter mit dreiphasiger induktiver Last 112
5.2.2 Modularer Mehrpunktstromrichter mit Maschinenlast . . . . . . . . 123
6 Auslegung des Leistungsteils 133
6.1 Kondensatorspezifikation . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Iterativer Algorithmus zur Bestimmung der minimalen Submodulkapazität . 135
6.3 Kreisstromfreier Betrieb . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 136
6.3.1.1 Vorgehensweise . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 143
6.3.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 143
6.3.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 145
6.4 Betrieb mit optimierten Kreisströmen . . . . . . . . . . . . . . . . . . . . 148
6.4.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 148
6.4.1.1 Algorithmus . . . . . . . . . . . . . . . . . . . . . . . . 148
6.4.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 157
6.4.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 157
6.4.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 159
7 Zusammenfassung der Dissertation 163
Literaturverzeichnis 169 / This thesis deals with the Modular Multilevel Converter M2C, an emerging and highly attractive multilevel converter topology for medium and high voltage applications. One of the most significant benefits of the M2C is its modular structure - the converter is composed of six converter arms, where each arm consists of a series connection of identical submodules (cells) and an inductor. Thus, the number of distinct voltage levels available for the line-to-line voltages is proportional to the number of submodules, which is in principle arbitrary.
For the investigation of this complex converter topology, two simulation models - a continuous model and a discrete model - are derived. For this purpose, the electrical circuit is described by a system of ordinary differential equations where the switching states of the power semiconductors are represented by the so-called switching functions. The continuous model results from the analytical solution of the differential equations with a continuous interpretation of the switching functions. In contrast, the discrete model uses discrete switching functions and is computed using numeric integration methods with MATLAB/Plecs.
One aspect of particular significance with the M2C is the topic of inner currents: the so-called circulating currents. In this thesis, these current components are defined mathematically in the time domain for the first time and the harmonics of the circulating currents for symmetrical operation of the converter are derived. For the discrete model, closed-loop control of the arm currents is implemented. Initial values for the inductors and capacitors are derived using the analytical equations of the continuous model. The M2C has several distributed energy storage elements: the submodule capacitors. The stored energy must be distributed evenly amongst these capacitors. To achieve this, three methods of energy distribution are presented. Another focus of this investigation is the current sharing between the upper and lower power semiconductor within the submodules. For different load phase angles and circulating currents, the current distribution is depicted. The influence of the floating capacitor voltages on the line-to-line voltages as well as the of number of discrete voltage levels in the line-to-line voltages are investigated with the discrete model.
The accuracy of the simulation models is verified by experimentation with a prototype of the M2C from the company Siemens. The experimental results are compared with simulation results from the two simulation models.
The dimensioning of the power components of the elecrical circuit is divided into two parts: the first for the submodule capacitors and the second for the power semiconductors. Initially, the capacitance of the submodule capacitors are minimized by an iterative algorithm on the basis of three different capacitor specifications. This computation is done using the continuous converter model for converter operation neglecting circulating currents and with optimized circulating currents. In the next step, the power semiconductors are dimensioned using the discrete model and assuming a defined current factor, which describes the ideal parallel connection of several semiconductors. The losses, the loss distribution, and the junction temperatures in the power semiconductors for different load phase angles describe the behavior of the converter for different operating points.:Kurzbeschreibung i
Abstract iii
Danksagung v
Abbildungsverzeichnis xi
Tabellenverzeichnis xvii
Abkürzungsverzeichnis xix
0 Einleitung 1
1 Stand der Technik bei Mittelspannungsstromrichtern 3
1.1 Neutral-Point-Clamped Voltage Source Converter . . . . . . . . . . . . . . 5
1.2 Cascaded H-Bridge Voltage Source Converter . . . . . . . . . . . . . . . . 8
1.3 Flying Capacitor Voltage Source Converter . . . . . . . . . . . . . . . . . 10
2 Modularer Mehrpunktstromrichter 13
2.1 Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Prinzipielle Funktionsweise . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Spannungserzeugung durch die Submodule . . . . . . . . . . . . . 15
2.2.2 Symmetrierung der Kondensatorspannungen . . . . . . . . . . . . 16
2.2.3 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Strukturelle Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Vorteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Nachteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Motivation der Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Modellierung des Modularen Mehrpunktstromrichters 25
3.1 Verlust- und Sperrschichttemperaturberechnung von IGBT-Modulen . . . . 25
3.1.1 Stromfaktor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Verlustberechnung . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2.1 Durchlassverluste . . . . . . . . . . . . . . . . . . . . . 27
3.1.2.2 Schaltverluste . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Thermisches Ersatzschaltbild . . . . . . . . . . . . . . . . . . . . . 30
3.2 Modellierung eines Antriebs mit Modularem Mehrpunktstromrichter . . . . 31
3.2.1 Schaltungsmodell mit einem Submodul pro Zweig . . . . . . . . . 31
3.2.2 Differenzialgleichungssystem für das Schaltungsmodell mit einem
Submodul pro Zweig . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Das diskrete Modell . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 Das kontinuierliche Modell . . . . . . . . . . . . . . . . . . . . . . 37
4 Analyse und Simulation des Modularen Mehrpunktstromrichters 43
4.1 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.1 Definition der Kreisströme . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 Harmonische der Kreisströme für den symmetrischen Betrieb . . . 45
4.2 Verfahren zur Erzeugung der Schaltsignale des diskreten Modells . . . . . . 49
4.3 Annahmen für die Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Daten des exemplarischen Simulationsmodells . . . . . . . . . . . 54
4.3.2 Anfangswertbestimmung . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2.1 Spulenströme . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2.2 Kondensatorspannungen . . . . . . . . . . . . . . . . . . 58
4.4 Analyse der Simulationsergebnisse . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Verläufe charakteristischer Stromrichtergrößen . . . . . . . . . . . 61
4.4.2 Vergleich des kontinuierlichen und des diskreten Modells . . . . . . 69
4.4.3 Möglichkeiten der Verschiebung der gespeicherten Energie der Submodulkondensatoren
. . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.3.1 Änderung der gespeicherten Energie einer Stromrichterphase
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.3.2 Verschiebung der gespeicherten Energie innerhalb einer
Stromrichterphase . . . . . . . . . . . . . . . . . . . . . 86
4.4.3.3 Änderung der gespeicherten Energien unter Verwendung
der Sternpunktspannung . . . . . . . . . . . . . . . . . . 94
4.4.4 Stromaufteilung innerhalb der Submodule . . . . . . . . . . . . . . 95
4.4.5 Einfluss der schwankenden Kondensatorspannungen auf die Leiter-
Leiter-Spannungen . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5 Messtechnische Überprüfung der Simulationsmodelle 109
5.1 Versuchsaufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Messergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2.1 Modularer Mehrpunktstromrichter mit dreiphasiger induktiver Last 112
5.2.2 Modularer Mehrpunktstromrichter mit Maschinenlast . . . . . . . . 123
6 Auslegung des Leistungsteils 133
6.1 Kondensatorspezifikation . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Iterativer Algorithmus zur Bestimmung der minimalen Submodulkapazität . 135
6.3 Kreisstromfreier Betrieb . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 136
6.3.1.1 Vorgehensweise . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 143
6.3.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 143
6.3.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 145
6.4 Betrieb mit optimierten Kreisströmen . . . . . . . . . . . . . . . . . . . . 148
6.4.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 148
6.4.1.1 Algorithmus . . . . . . . . . . . . . . . . . . . . . . . . 148
6.4.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 157
6.4.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 157
6.4.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 159
7 Zusammenfassung der Dissertation 163
Literaturverzeichnis 169
|
Page generated in 0.0968 seconds