Spelling suggestions: "subject:"classificação dde imagens"" "subject:"classificação dee imagens""
1 |
Classificação de nódulos em imagens mamográficas digitais por Transformada \"Wavelet\" / not availableSantaella, César Henrique de Melo 26 September 2002 (has links)
O presente trabalho de pesquisa trata da elaboração de um esquema classificador automático para massas nodulares identificadas em imagens mamográficas digitalizadas, com base na técnica da transformada wavelet. Esse classificador é parte integrante de um esquema computadorizado para auxílio ao diagnóstico (CAD, de \"computer-aided diagnosis\") em mamografia, que utiliza técnicas de processamento de imagens digitais para identificar, realçar e classificar estruturas de interesse clínico. Utilizou-se também um classificador de distâncias mínimas para distribuir as imagens em suas respectivas classes. Os resultados mostraram que o classificador é capaz de diferenciar com mais de 90% de acerto entre nódulos suspeitos e não suspeito. / This work performs an automatic classifier scheme addressed to nodular masses detected in digitalized mammographic images, based on the wavelet transform technique. This classifier is part of a computer-aided diagnosis (CAD) scheme in mammography, wich uses digital image processing techniques in order to detect, enchance and classify structures of clinical interest. Also a minimum distances classifier was used in order to distribute the images to their respective classes. Results show that this classifier is capable of differentiating suspect from non-suspect nodules with more than 90% of accuracy.
|
2 |
Análise e Classificação de imagens para aplicação de OCR em cupons fiscaisFeijó, José Victor Feijó de Araujo 13 December 2017 (has links)
TCC(graduação) - Universidade Federal de Santa Catarina. Centro Tecnológico. Ciências da Computação. / Submitted by José Victor Feijo de Araujo null (victor.feijo@ufsc.br) on 2017-12-12T00:28:08Z
No. of bitstreams: 1
TCC_JOSE_VICTOR_FEIJÓ.pdf: 18256303 bytes, checksum: 6f566a4daec3603fa7cc31bf1d8da5c8 (MD5) / Approved for entry into archive by Renato Cislaghi (renato.cislaghi@ufsc.br) on 2017-12-13T21:10:36Z (GMT) No. of bitstreams: 1
TCC_JOSE_VICTOR_FEIJÓ.pdf: 18256303 bytes, checksum: 6f566a4daec3603fa7cc31bf1d8da5c8 (MD5) / Made available in DSpace on 2017-12-13T21:10:36Z (GMT). No. of bitstreams: 1
TCC_JOSE_VICTOR_FEIJÓ.pdf: 18256303 bytes, checksum: 6f566a4daec3603fa7cc31bf1d8da5c8 (MD5) / A proposta sugerida por este trabalho foi de analisar o impacto de um modelo de classificação, seguido de técnicas de PDI e OCR para extração de texto em cupons fiscais, classificando-os em subgrupos. Técnicas selecionadas de PDI foram aplicadas para cada grupo com suas devidas características, por fim extraindo texto dessas imagens através de um algoritmo de OCR. Foi realizado um estudo sobre os algoritmos clássicos de classificação na área de aprendizado de máquinas, com foco nos algoritmos de “clusterização” e sua correlação com a classificação de imagens em um modelo de aprendizado não supervisionado. Também foi feita uma análise sobre as características das imagens de cupons fiscais e das possíveis técnicas de PDI que podem ser aplicadas. Em relação ao OCR, também foi realizado um estudo para verificar possíveis soluções na extração de texto e entender seu comportamento, possibilitando desta maneira implementar a arquitetura proposta. Sendo assim, foram desenvolvidos métodos para classificar as imagens em clusters utilizando algoritmos de “clusterização”. Também foram propostas três técnicas de PDI, a primeira aplicando uma série de realces, a segunda uma binarização adaptativa e a terceira técnica utilizando a compressão de dados JPEG. Essas imagens foram enviadas para o serviço de OCR do Google Vision, onde foi possível extrair o texto das imagens em formato de blocos. Os resultados do modelo desenvolvido foram avaliados comparando a taxa de acerto do OCR com os valores de texto reais presentes nos cupons fiscais, onde foi possível analisar a precisão de cada técnica proposta e da arquitetura como um todo. Foram obtidos resultados positivos utilizando o modelo desenvolvido, melhorando a extração do valor total da compra em aproximadamente 6%. Além disso, os resultados da compressão JPEG melhoraram também a extração de outros dados do cupom fiscal, como por exemplo o CNPJ e a data da compra.
|
3 |
Implementação de um classificador de imagens baseado em redes neurais em sistemas embarcadosSiqueira, Thiago Marques 15 July 2016 (has links)
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-12-14T16:07:22Z
No. of bitstreams: 1
2016_ThiagoMarquesSiqueira.pdf: 2402062 bytes, checksum: b8c2b9d950b6e29fda7a40d8e0704173 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2017-01-11T18:06:23Z (GMT) No. of bitstreams: 1
2016_ThiagoMarquesSiqueira.pdf: 2402062 bytes, checksum: b8c2b9d950b6e29fda7a40d8e0704173 (MD5) / Made available in DSpace on 2017-01-11T18:06:23Z (GMT). No. of bitstreams: 1
2016_ThiagoMarquesSiqueira.pdf: 2402062 bytes, checksum: b8c2b9d950b6e29fda7a40d8e0704173 (MD5) / Durante décadas, classificadores baseados em rede neural feedforward (FNN, do inglês, feedforward neural network) têm sido amplamente utilizados em muitos problemas de classificação, como imagem [1] e reconhecimento de fala [2]. Porém essa descoberta veio com algumas desvantagens, o grande número de multiplicações em ponto flutuante necessário em tempo de teste e a quantidade de memória necessária para armazenar os parâmetros treinados. Isso ocorre porque a maioria dos seus cálculos são produto de matrizes por vetores, onde as imagens de entrada dispostas como vetores são multiplicados por uma matriz de parâmetros aprendida para um conjunto específico de imagens. Quando implementados em hardware dedicado, a principal vantagem de um classificador FNN sobre os outros classificadores é a sua natureza inerente de paralelizar as operações de multiplicação. No entanto, quando o número de parâmetros de um classificador FNN é grande, surge o desafio na alta quantidade de recursos necessários para implementar operações de multiplicação seguida de acumulação (MAC, do inglês multiply-accumulate operations) e a dificuldade de transferir os dados da memória para a unidade de processamento com uma baixa latência. Houve uma extensa pesquisa na literatura sobre estratégias de quantização para resolver esses problemas. Entre essas estratégias de quantização, o xQuant [3] quantiza os parâmetros do classificador FNN primeiramente reescalonando para valores inteiros e, em seguida, aproximando-os a potência de 2 mais próximo. Quando um classificador quantizado com xQuant é utilizado para classificar imagens, cada multiplicação de ponto flutuante é substituída por uma única operação de deslocamento de bits. No entanto, xQuant ainda não foi implementado em um hardware dedicado. Portanto, nessa dissertação de mestrado é apresentado uma análise da implementação do xQuant em FPGA. Usando o algoritmo de aprendizagem classificador FNN LAST (Learning Algorithm for Soft-Thresholding), o classificador foi treinado para um problema de classificação de textura e utilizado este classificador como estudo de caso. Esse foi implementado como um co-processador (Hardware / Software), uma arquitetura usando o ponto flutuante de precisão simples (Fp) e uma versão quantizada do classificador usando xQuant (xQ). Ambos os projetos foram implementados em um Xilinx Zynq-7020 SoC, utilizando a ferramenta Xilinx Vivado HLS. Os resultados mostram que xQ executa 3 vezes mais rápida do que Fp e o uso de recursos da FPGA como se segue: FF de 52% para 7%; LUTs de 63% para 15%; LUTRAMs de 10% para 1%; dispositivo de DSP de 29% para 0. Com essa redução de recursos é uma alternativa bem vista, para sistemas embarcados críticos, onde a quantidade de recursos e de energia disponíveis são limitados. _________________________________________________________________________________________________ ABSTRACT / For decades, classifiers based on Feedforward Neural Network - FNN have been widely used in many classification problems, such as image [1] and recognition voice [2]. However this discovery came with some drawbacks, the number of multiplications necessary in floating point in test time and the amount of memory required to store the trained parameters. This it happens because the most of calculations are multiplications between matrices and vectors, where the input images arranged as vectors are multiplied by a parameter array learned for a specific set of images. When implemented in dedicated hardware, the main advantage of a FNN classifier on the other classifiers is their inherent nature to parallelize the multiplication operations. However, when the number of parameters of a FNN classifier is large, the challenge in high amount of resources needed to implement Multiply- Accumulate Operations - MAC and the difficulty of transferring data from memory to the processing unit with a low latency. There was an extensive literature search on quantization strategies to solve these problems. Among these quantization strategies, xQuant [3] first rescales them to integer values and then quantizes them by approaching each weight to its nearest power of two. When a quantized classifier xQuant is used to classify images, each floating- point multiplication is replaced by a single bit shift operation. However, xQuant has not yet been implemented in a dedicated hardware. Therefore, in this master thesis is presented an analysis of the implementation of xQuant on FPGA. Using the classifier Learning Algorithm for Soft-Thresholding - FNN LAST, the classifier was trained to a texture classification problem and used this classifier as a case study. This was implemented as a coprocessor (Hardware / Software), an architecture using the floating-point single precision (Fp) and a quantized version of the classifier using xQuant (xQ). Both projects were implemented on Xilinx Zynq- 7020 SoC, using the Xilinx Vivado HLS tool. The results show that performs xQ 3 times faster than Fp and use of FPGA resources as follows: FFs from 52% to 7%; LUTs from 63% to 15%; LUTRAMs from 10% to 1%; DSP slices from 29% to 0. With this reduction in resources is an alternative view and, for critical embedded systems where the amount of resources and energy are limited.
|
4 |
Classificação de nódulos em imagens mamográficas digitais por Transformada \"Wavelet\" / not availableCésar Henrique de Melo Santaella 26 September 2002 (has links)
O presente trabalho de pesquisa trata da elaboração de um esquema classificador automático para massas nodulares identificadas em imagens mamográficas digitalizadas, com base na técnica da transformada wavelet. Esse classificador é parte integrante de um esquema computadorizado para auxílio ao diagnóstico (CAD, de \"computer-aided diagnosis\") em mamografia, que utiliza técnicas de processamento de imagens digitais para identificar, realçar e classificar estruturas de interesse clínico. Utilizou-se também um classificador de distâncias mínimas para distribuir as imagens em suas respectivas classes. Os resultados mostraram que o classificador é capaz de diferenciar com mais de 90% de acerto entre nódulos suspeitos e não suspeito. / This work performs an automatic classifier scheme addressed to nodular masses detected in digitalized mammographic images, based on the wavelet transform technique. This classifier is part of a computer-aided diagnosis (CAD) scheme in mammography, wich uses digital image processing techniques in order to detect, enchance and classify structures of clinical interest. Also a minimum distances classifier was used in order to distribute the images to their respective classes. Results show that this classifier is capable of differentiating suspect from non-suspect nodules with more than 90% of accuracy.
|
5 |
ANÁLISE ESPECTRO-TEMPORAL DE ÍNDICES FÍSICOS E CLASSIFICADORES DE IMAGENS DE SENSORIAMENTO REMOTOMoreira Filho, Júlio César Cotrim 31 July 2012 (has links)
Submitted by João Arthur Martins (joao.arthur@ufpe.br) on 2015-03-03T19:46:37Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Julio DISSERTAÇÃO.pdf: 9429357 bytes, checksum: 32bf4765a058847836d8a47bc01d7061 (MD5) / Made available in DSpace on 2015-03-03T19:46:37Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Julio DISSERTAÇÃO.pdf: 9429357 bytes, checksum: 32bf4765a058847836d8a47bc01d7061 (MD5)
Previous issue date: 2012-07-31 / O Sensoriamento Remoto é uma ciência que permite o estudo de alvos na superfície
terrestre (ou de outros corpos celestes), sem a necessidade de contato físico,
apenas com o uso de sensores e suas técnicas específicas para cada aplicação.
Dentro deste conceito, este trabalho visou estudar o comportamento de alvos na
região do entorno da lagoa Olho d’Água, localizada no município de Jaboatão dos
Guararapes – PE. Região esta que apresenta uma heterogeneidade de alvos
interessante para este tipo pesquisa. Para tal estudo objetivou-se apresentar as
semelhanças e discrepâncias espaciais e espectrais, entre os mapeamentos
realizados por meio da classificação de imagens. Aplicou-se o algoritmo Máxima
Verossimilhança em seis composições diferentes usando, para defini-las, os índices
físicos NDVI, NDBI, NDWI, e as bandas 5, 4 e 3 do sensor TM LANDSAT-5. A
avaliação dos resultados foi feita a partir de observações visuais e numéricas
usando o cálculo dos índices kappa, exatidão global e teste de Z. Estes foram
distribuídos graficamente, para um melhor entendimento do comportamento dos
alvos. Foram observados os valores de Kappa e Exatidão global em duas datas
independentes, mês de março e setembro. Os valores destes índices foram
observados em gráfico de barra, para a compreensão das diferenças existentes dos
resultados perante as diferentes composições adotadas; gráfico de dispersão para
indicar a existência de variação relevante no intervalo de tempo aplicado; e gráfico
de linhas para descobrir qual a discrepância ou semelhança entre os resultados das
composições adotadas, e a composição formada pelas bandas 5, 4 e 3 do sistema
ii
sensor TM. Os índices físicos foram também analisados, quanto à distribuição
espectral de cada classe para estudo da confusão espectral existente nas
composições formadas com estes índices. Como conclusão mostrou-se que as
melhores composições para o uso do classificador Máxima Verossimilhança, nas
condições adotadas nesta pesquisa, na composição NDBI-4-3 e I-H-S,
demonstraram melhores resultados na maior parte das avaliações realizadas, e com
pior resultado a composição NDBI-NDVI-NDWI. As composições NDBI-4-3 e I-H-S
aplicadas com o algoritmo Máxima Verossimilhança, apresentam resultados
satisfatórios tal qual a composição padrão 5-4-3.
|
6 |
Detecção de diferentes alvos no entorno de reservatórios no semiárido através do uso de sensoriamento remoto / Use of remote sensing to detect different targets in the vicinity of reservoirs in the semiaridAraújo, Efraim Martins January 2017 (has links)
ARAÚJO, Efraim Martins. Utilização do sensoriamento remoto para detecção de diferentes alvos no entorno de
reservatórios no semiárido. 2017. 159 f. Tese (Doutorado em Engenharia Agrícola)-Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Aline Mendes (alinemendes.ufc@gmail.com) on 2017-05-30T20:44:38Z
No. of bitstreams: 1
2017_tese_emaraujo.pdf: 10444465 bytes, checksum: 54198305b9d650c104ee92d5588717ee (MD5) / Approved for entry into archive by Aline Mendes (alinemendes.ufc@gmail.com) on 2017-05-30T21:13:40Z (GMT) No. of bitstreams: 1
2017_tese_emaraujo.pdf: 10444465 bytes, checksum: 54198305b9d650c104ee92d5588717ee (MD5) / Made available in DSpace on 2017-05-30T21:13:40Z (GMT). No. of bitstreams: 1
2017_tese_emaraujo.pdf: 10444465 bytes, checksum: 54198305b9d650c104ee92d5588717ee (MD5)
Previous issue date: 2017 / The main goal of this work is to evaluate the potential of discrimination for soil use and
occupation in the surroundings of reservoirs located in the semi-arid region, using spectral
information obtained by remote sensor considering multispectral and hyperspectral satellites
images. The satellite images selected for the survey are Landsat 8 and Hyperion images. The
research evaluated and compared the performance of different techniques for image
classification applied to multispectral (Landsat 8) and hyperspectral (Hyperion) sensors aiming
the detection and delineation of the land uses around the reservoirs Paus Brancos, Nova Vida
and Marengo, located in the 25 de Maio settlement, Madalena – CE, belongin the hydrographic
basin of the Banabuiú reservoir. The classes identified based on surveys conducted in 2014 and
2015 campaigns around the reservoirs were: water (water bodies), macrophytes, exposed soil,
native vegetation, agriculture, sparse vegetation and fload plaind crop, in addition to cloud and
shadow targets. Different techniques for image processing are tested and compared, such as
NDVI (Vegetation Index by Normative Difference), non-supervised classifier (ISODATA) and
supervised classifiers (Maximum Likelihood, K-Nearest Neighbours - KNN, Minimal Distance
and Random Forest). For processing hyperspectral images, we use SVM (Support Vector
Machine) classifier, which provides to analyze all the 155 radiometrically calibrated bands of
the Hyperion sensor, assigning them weights in the classification process. According to the
results provided by SVM classifier, RGB compositions of the 10 best ranked bands are
evaluated aiming the identification of the best successful combination for delineating classes in
the surroundings of the three studied reservoirs (bands R – 51, G – 161, B – 19). The analysis
of NDVI multispectral images behaved inaccurate for delineating classes, mainly considering
targets with similar spectral response, such as some kinds of vegetation. Meanwhile, the
unsupervised classification proved to be deficient, not being able to discriminate water bodies
from cloud shadow, even after applying contrast enhancing techniques within the Matlab
computing program environment. The spectral and temporal analysis of soil use reflectance
allowed to identify the spectral behavior of the nine classes considered in this study and also
the spectral bands with the highest potential for discriminating the referred classes. Indeed, even
within these optimal bands, some targets present similar spectral behaviors, difficulting their
discrimination. On the other hand, the supervised classification applied to Landsat 8 and
Hyperion images achieved to be succeed in the delineation of either distinct (water, soil and
vegetation) and similar (macrophytes, fload plaind crop, native vegetation, agriculture and
sparse vegetation) targets. It should be emphasized that the performance results of the classifiers
applied to the Hyperion images are generally superior to those obtained respectively by the
same classifiers over the Landsat 8 images. This can be explained by the higher spectral
resolution of the first sensor, which increases the potential for delineating targets with similar
spectral response. Concerning the supervised classifiers, in the stage of performance test, it was
observed that KNN method is more accurate than the others for Landsat 8 images, with a
maximum Kappa coefficient equal to 0.68. Meanwhile, for Hyperion images, the Maximum
Likelihood method achieves the highest performance result, with a maximum Kappa coefficient
equal to 0,78. Additionally, a sensitivity analysis of the supervised classification applied to
Landsat 8 and Hyperion images is performed regarding the number of samples per class
randomly collected for training. It is clearly observed that the randomness concerning training
stage allows finding subsets of samples which increase the performance results. For the
evaluation of the supervised maximum likelihood classification method, Landsat 8
(24/08/2015) and Hyperion (285/08/2015) images are considered for the computing tests. The
training data were collected through a research technical visit in November, 2015, around São
Nicolau reservoir, also located in the 25 de Maio settlement, while the data for performance
evaluation (validation) were extracted from the image generated through the overflight
performed by an Unmanned Aerial Vehicle (UAV), in the same period in the Paus Brancos
reservoir. The obtained results demonstrate the robustness for that classifier when applied to
Hyperion image, with a Kappa of 0.83. Concerning Landsat 8 image, the computed Kappa is
0.49, which can be explained by the corresponding lower spectral resolution. Two other
applications of the Maximum Likelihood classifier for Landsat 8 and Hyperion images were
performed. In the first one, the accuracy of each classifier for detecting reservoirs contours was
tested. In some of these reservoirs, that task is made difficult by the presence of macrophytes
in the hydraulic basin. For this analysis, the intersection area between the scenes of the Landsat
8 and Hyperion sensors, which cover the area of 25 de Maio Settlement, was used, totalizing
48 reservoirs. The results showed that the classifier generally underestimates the reservoir areas,
reaching 73% and 51% of the reference value in the Landsat 8 and Hyperion images,
respectively. Finally, an application of the supervised Maximum Likelihood classifier was
performed using Hyperion images for the detection of land uses in the surroundings of
reservoirs of other regions of the State of Ceará. In the analysis of the available data, it is
possible to identify a reservoir located in the municipality of Lavras da Mangabeira, displayed
in the Hyperion image (26/09/2010), with low cloud cover, near the image of Google Earth
(08/07/2009), also used for validation purposes. The results of the application indicate accurate
performance for the classifier associated with the RGB composition selected for the Hyperion
image (bands R - 51, G - 161, B - 19) concerning the detection of the uses around this reservoir,
the resultant Kappa coefficient is 0.90. On the other hand, the availability of Hyperion sensor
data in applications for the State of Ceará is very restricted, which makes difficult to develop
continuous researches using hyperspectral images. / O objetivo deste trabalho é avaliar o potencial de discriminação dos uso e ocupação do solo no
entorno de reservatórios localizados na região semiárida, mediante informações espectrais
obtidas por sensor remoto com imagens de satélites multiespectrais e hiperespectrais. As
imagens de satélites selecionadas para a realização da pesquisa foram imagens Landsat 8 e
Hyperion. A pesquisa analisou o desempenho de diferentes técnicas de classificação de imagens
aplicadas a sensores multiespectrais (Landsat 8) e hiperespectrais (Hyperion) para detecção e
diferenciação das classes do solo no entorno dos reservatórios Paus Brancos, Nova Vida e
Marengo, situados no Assentamento 25 de Maio, localizados no município de Madalena – CE,
pertencentes a bacia hidrográfica do reservatório Banabuiú. As classes identificadas com base
em levantamentos em campanhas realizadas em 2014 e 2015 no entorno dos reservatórios são:
água (corpos hídricos), macrófitas, solo exposto, vegetação nativa, agricultura, vegetação rala
e vazante, além dos alvos nuvem e sombra de nuvem. Testaram-se na pesquisa diferentes
técnicas de processamento de imagens, tais como NDVI (Índice de Vegetação por Diferença
Normatizada), classificador não supervisionado (ISODATA) e supervisionados (Máxima
Verossimilhança, K-Nearest Neighbours - KNN, Mínima Distância e Random Forest). Para
processamento de imagens hiperespectrais utilizou-se, adicionalmente, o classificador SVM
(Support Vector Machine), por permitir o processamento de todas as 155 bandas
radiometricamente calibradas do sensor Hyperion, atribuindo-lhes pesos no processo de
classificação. Testaram-se, então, composições RGB das 10 melhores bandas de acordo com o
ranking resultante do classificador SVM, para identificação daquela com melhor desempenho
na diferenciação das classes no entorno dos três reservatórios estudados (bandas R – 51, G –
161, B – 19). A análise de imagens multiespectrais do NDVI apresentou limitações na
diferenciação de classes, sobretudo em alvos com resposta espectral similar como tipos de
vegetação. Já a classificação não-supervisionada mostrou-se deficiente por não conseguir
separar corpos hídricos de sombra de nuvem, mesmo após a aplicação de técnicas de realces
implementados dentro do ambiente Matlab. A análise espectral e temporal da reflectância de
classes permitiu identificar o comportamento espectral das nove classes analisadas neste estudo,
indicando as faixas espectrais com maior potencial de diferenciação, embora se perceba que,
mesmo nestas faixas, alguns alvos apresentam comportamento espectral similar, não sendo
facilmente separados. A classificação supervisionada, por sua vez, destacou-se por conseguir
separar tanto alvos distintos (água, solo e vegetação) como alvos semelhantes (macrófitas,
vazante, vegetação nativa, agricultura e vegetação rala) quando aplicadas as imagens dos
sensores Landsat 8 e Hyperion. Cabe destacar, entretanto, que o desempenho dos
classificadores aplicados à imagem do sensor Hyperion foi, em geral, superior aos obtidos em
imagem Landsat 8, o que pode ser explicado pela alta resolução espectral do primeiro, que
facilita a diferenciação de alvos com reposta espectral similar. Na etapa de teste de desempenho
dos classificadores supervisionados, observou-se que o método KNN foi superior aos demais
no processamento de imagem Landsat 8, com coeficiente Kappa de 0,68. Já no caso do
Hyperion, o método de Máxima Verossimilhança teve melhor desempenho com Kappa de 0,78.
Adicionalmente, realizou-se uma análise de sensibilidade da classificação supervisionada
aplicada a imagens Landsat 8 e Hyperion quanto ao número de amostras por classe usadas no
treinamento, indicando que, em geral, o caráter aleatório de escolha das amostras potencializa
o desempenho dos classificadores. Para validação do método de classificação supervisionada
de Máxima Verossimilhança, utilizaram-se imagens Landsat 8 (24/08/2015) e Hyperion
(28/08/2015). Os dados de treinamento do classificador foram coletados na campanha de
novembro de 2015, no entorno do reservatório São Nicolau, também localizado no
Assentamento 25 de Maio, enquanto que os dados de verificação do desempenho do método
foram extraídos da imagem gerada no sobrevoo realizado, no mesmo período, no reservatório
Paus Branco, usando um VANT (veículo aéreo não tripulado). Os resultados mostraram um
excelente desempenho do classificador quando aplicado à imagem do sensor Hyperion, com
Kappa de 0,83. Já a aplicação para a imagem do sensor Landsat 8 resultou em um Kappa de
0,49, o que pode ser explicado por sua baixa resolução espectral. Realizaram-se, ainda, duas
aplicações do classificador supervisionado de Máxima Verossimilhança em imagens Landsat 8
e Hyperion para testar a eficiência do método. Na primeira, verificou-se a habilidade do
classificador na detecção de contornos de reservatórios, em alguns dificultada pela presença de
macrófitas na bacia hidráulica. Para isso, utilizou-se a área de interseção entre as cenas dos
sensores Landsat 8 e Hyperion, que cobrem a área do Assentamento 25 de Maio, identificando
48 reservatórios. Os resultados mostraram que, em geral, o classificador subestima as áreas dos
reservatórios, atingindo 73% e 51% do valor referência nas imagens Landsat 8 e Hyperion,
respectivamente. Por fim, realizou-se uma aplicação do classificador supervisionado de
Máxima Verossimilhança em imagens Hyperion para detecção de classes no entorno de
reservatórios de outras regiões do Estado do Ceará. Na análise dos dados disponíveis,
identificou-se um reservatório no município de Lavras da Mangabeira-CE, presente na imagem
Hyperion (26/09/2010), com baixa cobertura de nuvens, em período próximo à imagem do
google Earth (08/07/2009), usada para validação dos resultados. Os resultados da aplicação
indicaram um bom desempenho do classificador associado à composição RGB da imagem
Hyperion escolhida (bandas R – 51, G – 161, B – 19) na detecção das classes no entorno deste
reservatório, produzindo um coeficiente Kappa de 0,90. Por outro lado, a disponibilidade de
dados do sensor Hyperion em aplicações para o Estado do Ceará é bem restrita, o que dificulta
o desenvolvimento de pesquisas continuadas usando imagens hiperespectrais.
|
7 |
Detecção de diferentes alvos no entorno de reservatórios no semiárido através do uso de sensoriamento remoto / Use of remote sensing to detect different targets in the vicinity of reservoirs in the semiaridAraújo, Efraim Martins January 2017 (has links)
ARAÚJO, E. M. Detecção de diferentes alvos no entorno de reservatórios no semiárido através do uso de sensoriamento remoto. 2017. 161 f. Tese (Doutorado em Engenharia Agrícola)- Universidade Federal do Ceará, Fortaleza, 2016. / Submitted by Weslayne Nunes de Sales (weslaynesales@ufc.br) on 2017-06-21T11:25:55Z
No. of bitstreams: 1
2017_tese_emaraujo.pdf: 9310147 bytes, checksum: d2e4fbc1a2d900355b4d2243ab7adb84 (MD5) / Approved for entry into archive by Weslayne Nunes de Sales (weslaynesales@ufc.br) on 2017-06-21T11:27:46Z (GMT) No. of bitstreams: 1
2017_tese_emaraujo.pdf: 9310147 bytes, checksum: d2e4fbc1a2d900355b4d2243ab7adb84 (MD5) / Made available in DSpace on 2017-06-21T11:27:46Z (GMT). No. of bitstreams: 1
2017_tese_emaraujo.pdf: 9310147 bytes, checksum: d2e4fbc1a2d900355b4d2243ab7adb84 (MD5)
Previous issue date: 2017 / The main goal of this work is to evaluate the potential of discrimination for soil use and
occupation in the surroundings of reservoirs located in the semi-arid region, using spectral
information obtained by remote sensor considering multispectral and hyperspectral satellites
images. The satellite images selected for the survey are Landsat 8 and Hyperion images. The
research evaluated and compared the performance of different techniques for image
classification applied to multispectral (Landsat 8) and hyperspectral (Hyperion) sensors aiming
the detection and delineation of the land uses around the reservoirs Paus Brancos, Nova Vida
and Marengo, located in the 25 de Maio settlement, Madalena – CE, belongin the hydrographic
basin of the Banabuiú reservoir. The classes identified based on surveys conducted in 2014 and
2015 campaigns around the reservoirs were: water (water bodies), macrophytes, exposed soil,
native vegetation, agriculture, sparse vegetation and fload plaind crop, in addition to cloud and
shadow targets. Different techniques for image processing are tested and compared, such as
NDVI (Vegetation Index by Normative Difference), non-supervised classifier (ISODATA) and
supervised classifiers (Maximum Likelihood, K-Nearest Neighbours - KNN, Minimal Distance
and Random Forest). For processing hyperspectral images, we use SVM (Support Vector
Machine) classifier, which provides to analyze all the 155 radiometrically calibrated bands of
the Hyperion sensor, assigning them weights in the classification process. According to the
results provided by SVM classifier, RGB compositions of the 10 best ranked bands are
evaluated aiming the identification of the best successful combination for delineating classes in
the surroundings of the three studied reservoirs (bands R – 51, G – 161, B – 19). The analysis
of NDVI multispectral images behaved inaccurate for delineating classes, mainly considering
targets with similar spectral response, such as some kinds of vegetation. Meanwhile, the
unsupervised classification proved to be deficient, not being able to discriminate water bodies
from cloud shadow, even after applying contrast enhancing techniques within the Matlab
computing program environment. The spectral and temporal analysis of soil use reflectance
allowed to identify the spectral behavior of the nine classes considered in this study and also
the spectral bands with the highest potential for discriminating the referred classes. Indeed, even
within these optimal bands, some targets present similar spectral behaviors, difficulting their
discrimination. On the other hand, the supervised classification applied to Landsat 8 and
Hyperion images achieved to be succeed in the delineation of either distinct (water, soil and
vegetation) and similar (macrophytes, fload plaind crop, native vegetation, agriculture and
sparse vegetation) targets. It should be emphasized that the performance results of the classifiers
applied to the Hyperion images are generally superior to those obtained respectively by the
same classifiers over the Landsat 8 images. This can be explained by the higher spectral
resolution of the first sensor, which increases the potential for delineating targets with similar
spectral response. Concerning the supervised classifiers, in the stage of performance test, it was
observed that KNN method is more accurate than the others for Landsat 8 images, with a
maximum Kappa coefficient equal to 0.68. Meanwhile, for Hyperion images, the Maximum
Likelihood method achieves the highest performance result, with a maximum Kappa coefficient
equal to 0,78. Additionally, a sensitivity analysis of the supervised classification applied to
Landsat 8 and Hyperion images is performed regarding the number of samples per class
randomly collected for training. It is clearly observed that the randomness concerning training
stage allows finding subsets of samples which increase the performance results. For the
evaluation of the supervised maximum likelihood classification method, Landsat 8
(24/08/2015) and Hyperion (285/08/2015) images are considered for the computing tests. The
training data were collected through a research technical visit in November, 2015, around São
Nicolau reservoir, also located in the 25 de Maio settlement, while the data for performance
evaluation (validation) were extracted from the image generated through the overflight
performed by an Unmanned Aerial Vehicle (UAV), in the same period in the Paus Brancos
reservoir. The obtained results demonstrate the robustness for that classifier when applied to
Hyperion image, with a Kappa of 0.83. Concerning Landsat 8 image, the computed Kappa is
0.49, which can be explained by the corresponding lower spectral resolution. Two other
applications of the Maximum Likelihood classifier for Landsat 8 and Hyperion images were
performed. In the first one, the accuracy of each classifier for detecting reservoirs contours was
tested. In some of these reservoirs, that task is made difficult by the presence of macrophytes
in the hydraulic basin. For this analysis, the intersection area between the scenes of the Landsat
8 and Hyperion sensors, which cover the area of 25 de Maio Settlement, was used, totalizing
48 reservoirs. The results showed that the classifier generally underestimates the reservoir areas,
reaching 73% and 51% of the reference value in the Landsat 8 and Hyperion images,
respectively. Finally, an application of the supervised Maximum Likelihood classifier was
performed using Hyperion images for the detection of land uses in the surroundings of
reservoirs of other regions of the State of Ceará. In the analysis of the available data, it is
possible to identify a reservoir located in the municipality of Lavras da Mangabeira, displayed
in the Hyperion image (26/09/2010), with low cloud cover, near the image of Google Earth
(08/07/2009), also used for validation purposes. The results of the application indicate accurate
performance for the classifier associated with the RGB composition selected for the Hyperion
image (bands R - 51, G - 161, B - 19) concerning the detection of the uses around this reservoir,
the resultant Kappa coefficient is 0.90. On the other hand, the availability of Hyperion sensor
data in applications for the State of Ceará is very restricted, which makes difficult to develop
continuous researches using hyperspectral images. / O objetivo deste trabalho é avaliar o potencial de discriminação dos uso e ocupação do solo no entorno de reservatórios localizados na região semiárida, mediante informações espectrais obtidas por sensor remoto com imagens de satélites multiespectrais e hiperespectrais. As imagens de satélites selecionadas para a realização da pesquisa foram imagens Landsat 8 e Hyperion. A pesquisa analisou o desempenho de diferentes técnicas de classificação de imagens aplicadas a sensores multiespectrais (Landsat 8) e hiperespectrais (Hyperion) para detecção e diferenciação das classes do solo no entorno dos reservatórios Paus Brancos, Nova Vida e Marengo, situados no Assentamento 25 de Maio, localizados no município de Madalena – CE, pertencentes a bacia hidrográfica do reservatório Banabuiú. As classes identificadas com base em levantamentos em campanhas realizadas em 2014 e 2015 no entorno dos reservatórios são: água (corpos hídricos), macrófitas, solo exposto, vegetação nativa, agricultura, vegetação rala e vazante, além dos alvos nuvem e sombra de nuvem. Testaram-se na pesquisa diferentes técnicas de processamento de imagens, tais como NDVI (Índice de Vegetação por Diferença Normatizada), classificador não supervisionado (ISODATA) e supervisionados (Máxima Verossimilhança, K-Nearest Neighbours - KNN, Mínima Distância e Random Forest). Para processamento de imagens hiperespectrais utilizou-se, adicionalmente, o classificador SVM (Support Vector Machine), por permitir o processamento de todas as 155 bandas radiometricamente calibradas do sensor Hyperion, atribuindo-lhes pesos no processo de classificação. Testaram-se, então, composições RGB das 10 melhores bandas de acordo com o ranking resultante do classificador SVM, para identificação daquela com melhor desempenho na diferenciação das classes no entorno dos três reservatórios estudados (bandas R – 51, G – 161, B – 19). A análise de imagens multiespectrais do NDVI apresentou limitações na diferenciação de classes, sobretudo em alvos com resposta espectral similar como tipos de vegetação. Já a classificação não-supervisionada mostrou-se deficiente por não conseguir separar corpos hídricos de sombra de nuvem, mesmo após a aplicação de técnicas de realces implementados dentro do ambiente Matlab. A análise espectral e temporal da reflectância de classes permitiu identificar o comportamento espectral das nove classes analisadas neste estudo, indicando as faixas espectrais com maior potencial de diferenciação, embora se perceba que, mesmo nestas faixas, alguns alvos apresentam comportamento espectral similar, não sendo facilmente separados. A classificação supervisionada, por sua vez, destacou-se por conseguir separar tanto alvos distintos (água, solo e vegetação) como alvos semelhantes (macrófitas, vazante, vegetação nativa, agricultura e vegetação rala) quando aplicadas as imagens dos sensores Landsat 8 e Hyperion. Cabe destacar, entretanto, que o desempenho dos classificadores aplicados à imagem do sensor Hyperion foi, em geral, superior aos obtidos em imagem Landsat 8, o que pode ser explicado pela alta resolução espectral do primeiro, que facilita a diferenciação de alvos com reposta espectral similar. Na etapa de teste de desempenho dos classificadores supervisionados, observou-se que o método KNN foi superior aos demais no processamento de imagem Landsat 8, com coeficiente Kappa de 0,68. Já no caso do Hyperion, o método de Máxima Verossimilhança teve melhor desempenho com Kappa de 0,78. Adicionalmente, realizou-se uma análise de sensibilidade da classificação supervisionada aplicada a imagens Landsat 8 e Hyperion quanto ao número de amostras por classe usadas no treinamento, indicando que, em geral, o caráter aleatório de escolha das amostras potencializa o desempenho dos classificadores. Para validação do método de classificação supervisionada de Máxima Verossimilhança, utilizaram-se imagens Landsat 8 (24/08/2015) e Hyperion (28/08/2015). Os dados de treinamento do classificador foram coletados na campanha de novembro de 2015, no entorno do reservatório São Nicolau, também localizado no Assentamento 25 de Maio, enquanto que os dados de verificação do desempenho do método foram extraídos da imagem gerada no sobrevoo realizado, no mesmo período, no reservatório Paus Branco, usando um VANT (veículo aéreo não tripulado). Os resultados mostraram um excelente desempenho do classificador quando aplicado à imagem do sensor Hyperion, com Kappa de 0,83. Já a aplicação para a imagem do sensor Landsat 8 resultou em um Kappa de 0,49, o que pode ser explicado por sua baixa resolução espectral. Realizaram-se, ainda, duas aplicações do classificador supervisionado de Máxima Verossimilhança em imagens Landsat 8 e Hyperion para testar a eficiência do método. Na primeira, verificou-se a habilidade do classificador na detecção de contornos de reservatórios, em alguns dificultada pela presença de macrófitas na bacia hidráulica. Para isso, utilizou-se a área de interseção entre as cenas dos sensores Landsat 8 e Hyperion, que cobrem a área do Assentamento 25 de Maio, identificando 48 reservatórios. Os resultados mostraram que, em geral, o classificador subestima as áreas dos reservatórios, atingindo 73% e 51% do valor referência nas imagens Landsat 8 e Hyperion, respectivamente. Por fim, realizou-se uma aplicação do classificador supervisionado de Máxima Verossimilhança em imagens Hyperion para detecção de classes no entorno de reservatórios de outras regiões do Estado do Ceará. Na análise dos dados disponíveis, identificou-se um reservatório no município de Lavras da Mangabeira-CE, presente na imagem Hyperion (26/09/2010), com baixa cobertura de nuvens, em período próximo à imagem do google Earth (08/07/2009), usada para validação dos resultados. Os resultados da aplicação indicaram um bom desempenho do classificador associado à composição RGB da imagem Hyperion escolhida (bandas R – 51, G – 161, B – 19) na detecção das classes no entorno deste reservatório, produzindo um coeficiente Kappa de 0,90. Por outro lado, a disponibilidade de dados do sensor Hyperion em aplicações para o Estado do Ceará é bem restrita, o que dificulta o desenvolvimento de pesquisas continuadas usando imagens hiperespectrais.
|
8 |
Redução de custo computacional em classificações baseadas em transformadas aprendidasMachado, Emerson Lopes 10 July 2015 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2015. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-02-23T15:22:45Z
No. of bitstreams: 1
2015_EmersonLopesMachado.pdf: 3892504 bytes, checksum: 2b7bca95e649443f1f40cfc3df98fa56 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-03-21T22:48:51Z (GMT) No. of bitstreams: 1
2015_EmersonLopesMachado.pdf: 3892504 bytes, checksum: 2b7bca95e649443f1f40cfc3df98fa56 (MD5) / Made available in DSpace on 2016-03-21T22:48:51Z (GMT). No. of bitstreams: 1
2015_EmersonLopesMachado.pdf: 3892504 bytes, checksum: 2b7bca95e649443f1f40cfc3df98fa56 (MD5) / Apresento nesta tese a análise teórica e as avaliações empíricas do conjunto de técnicas que proponho para a redução do custo computacional da classificação em tempo de teste de classificadores que são baseados em transformada e limiar suave aprendidos a partir dos dados de treinamento. Modificando o procedimento de otimização numérica utilizado na aprendizagem da transformada e do vetor de classificação, assim como aplicando um processamento em seus respectivos elementos após a aprendizagem, as técnicas que proponho permitem reduzir a quantidade de bits necessária para se realizar a classificação e trocar cada multiplicação em ponto flutuante por um simples deslocamento de bit em inteiro. Como estudo de caso, utilizei o algoritmo de classificação Learning Algorithm for Soft-Thresholding (LAST) e os mesmos conjuntos de dados utilizados no artigo que o apresenta. Os resultados do estudo de caso confirmam a possibilidade de se utilizar somente somas e deslocamentos em inteiro para a classificação em tempo de teste com uma perda de acurácia limitada. Essas operações de baixo custo computacional são importantes em implementações feitas em FPGA por permitir aumentar a velocidade de classificação e ao mesmo tempo diminuir o consumo de energia e o custo de fabricação. Além disso, as técnicas que apresento reduziram em quase 50% a quantidade de bits necessária para a extração de características na maioria dos experimentos que realizei.
______________________________________________________________________________________________ ABSTRACT / We present a theoretical analysis and empirical evaluations of a novel set of techniques for computational cost reduction of classifiers that are based on learned transform and soft-threshold. By modifying optimization procedures for dictionary and classifier training, as well as the resulting dictionary elements, our techniques allow to reduce the bit precision and to replace each floating-point multiplication by a single integer bit shift. We also show how the optimization algorithms in some dictionary training methods can be modified to penalize higher-energy dictionaries. We applied our techniques with the classifier Learning Algorithm for Soft-Thresholding, testing on the datasets used in its original paper. Our results indicate it is feasible to use solely sums and bit shifts of integers to classify at test time with a limited reduction of the classification accuracy. These low power operations are a valuable trade off in FPGA implementations as they increase the classification throughput while decrease both energy consumption and manufacturing cost. Moreover, our techniques reduced almost 50% of the bit precision in almost all datasets we tested.
|
9 |
Análise de imagens multiespectrais através de redes complexas / Multispectral image analysis through complex networksScabini, Leonardo Felipe dos Santos 26 July 2018 (has links)
Imagens multiespectrais estão presentes na grande maioria de dispositivos de imageamento atuais, desde câmeras pessoais até microscópios, telescópios e satélites. No entanto, grande parte dos trabalhos em análise de texturas e afins propõem abordagens monocromáticas, que muitas vezes consideram apenas níveis de cinza. Nesse contexto e considerando o aumento da capacidade dos computadores atuais, o uso da informação espectral deve ser considerada na construção de modelos melhores. Ultimamente redes neurais convolucionais profundas pré-treinadas tem sido usadas em imagens coloridas de 3 canais, porém são limitadas a apenas esse formato e computam muitas convoluções, o que demanda por hardware específico (GPU). Esses fatos motivaram esse trabalho, que propõem técnicas para a modelagem e caracterização de imagens multiespectrais baseadas em redes complexas, que tem se mostrado uma ferramenta eficiente em trabalhos anteriores e possui complexidade computacional similar à métodos tradicionais. São introduzidas duas abordagens para aplicação em imagens coloridas de três canais, denominadas Rede Multicamada (RM) e Rede Multicamada Direcionada (RMD). Esses métodos modelam todos os canais da imagem de forma conjunta, onde as redes possuem conexões intra e entre canais, de forma parecida ao processamento oponente de cor do sistema visual humano. Experimentos em cinco bases de textura colorida mostram a proposta RMD supera vários métodos da literatura no geral, incluindo redes convolucionais e métodos tradicionais integrativos. Além disso, as propostas demonstraram alta robustez a diferentes espaços de cor (RGB, LAB, HSV e I1I2I3), enquanto que outros métodos oscilam de base para base. Também é proposto um método para caracterizar imagens multiespectrais de muitos canais, denominado Rede Direcionada de Similaridade Angular (RDSA). Nessa proposta, cada pixel multiespectral é considerado como um vetor de dimensão equivalente à quantidade de canais da imagem e o peso das arestas representa sua similaridade do cosseno, apontando para o pixel de maior valor absoluto. Esse método é aplicado em um conjunto de imagens de microscopia por fluorescência de 32 canais, em um experimento para identificar variações na estrutura foliar do espécime Jacaranda Caroba submetidos à diferentes condições. O método RDSA obtém as maiores taxas de acerto de classificação nesse conjunto de dados, com 91, 9% usando o esquema de validação cruzada Leave-one-out e 90, 5(±1, 1)% com 10-pastas, contra 81, 8% e 84, 7(±2, 2) da rede convolucional VGG16. / Multispectral images are present in the vast majority of current imaging devices, from personal cameras to microscopes, telescopes and satellites. However, much of the work in texture analysis and the like proposes monochromatic approaches, which often consider only gray levels. In this context and considering the performance increase of current computers, the use of the spectral information must be considered in the construction of better models. Lately, pre-trained deep convolutional neural networks have been used in 3-channel color images, however they are limited to just this format and compute many convolutions, which demands specific hardware (GPU). These facts motivated this work, which propose techniques for the modeling and characterization of multispectral images based on complex networks, which has proved to be an efficient tool in previous works and has computational complexity similar to traditional methods. Two approaches are introduced for application in 3-channel color images, called Multilayer Network (RM) and Directed Multilayer Network (RMD). These methods model all channels of the image together, where the networks have intra- and inter-channel connections, similar to the opponent color processing of the human visual system. Experiments in five color texture datasets shows that the RMD proposal overcomes several methods of the literature in general, including convolutional networks and traditional integrative methods. In addition, the proposals have demonstrated high robustness to different color spaces (RGB, LAB, HSV and I1I2I3), while other methods oscillate from dataset to dataset. Moreover it is proposed a new method to characterize multispectral images of many channels, called Directed Network of Angular Similarity (RDSA). In this proposal, each multispectral pixel is considered as a vector of dimensions equivalent to the number of channels of the image and the weight of the edges represents its cosine similarity, pointing to the pixel of greatest absolute value. This method is applied to a set of fluorescence microscopy images of 32 channels in an experiment to identify variations in the leaf structure of the Jacaranda Caroba specimen under different conditions. The RDSA method obtains the highest classification rates in this dataset, with 91.9% with the Leave-one-out cross-validation scheme and 90.5(±1.1)% with 10-folds, against 81.8% and 84.7(±2.2) of the convolutional network VGG16.
|
10 |
Configuração de redes neurais para classificação de alvos FLIR (Forward Looking InfraRed).Carlos Alberto Silveira 27 October 2004 (has links)
O presente trabalho surgiu da necessidade da EMBRAER de dominar o conhecimento na disciplina de redes neurais para a classificação de alvos em aplicação de comando e controle. Para obter este conhecimento, foram desenvolvidas duas arquiteturas de redes neurais chamada de Redes Neurais Única (RNU), que trata todas as informações retiradas das imagens dos alvos como um todo e Comitê de Redes Neurais (CRN) composto por redes independente em dois níveis, onde o primeiro nível faz uma classificação inicial e segundo nível uma classificação final baseada no nível anterior. Essas duas arquiteturas distintas foram treinadas, utilizando-se padrões de imagens infravermelhos, que foram corrompidos com sombras e reflexos para se aproximarem do cenário real.Cada uma das arquiteturas teve os parâmetros de desempenho, robustez e sensibilidade avaliados, sendo que a contribuição principal deste trabalho se dá em identificar as diferenças destes parâmetros entre as duas arquiteturas.
|
Page generated in 0.11 seconds