Spelling suggestions: "subject:"classification semisupervised"" "subject:"classification semissupervised""
1 |
Estimation et sélection en classification semi-supervisée / Estimation and selection in semi-supervised classificationVandewalle, Vincent 09 December 2009 (has links)
Le sujet de cette thèse est la classification semi-supervisée qui est considérée d'un point de vue décisionnel. Nous nous intéressons à la question de choix de modèles dans ce contexte où les modèles sont estimés en utilisant conjointement des données étiquetées et des données non étiquetées plus nombreuses. Nous concentrons notre recherche sur les modèles génératifs où la classification semi-supervisée s'envisage sans difficulté, contrairement au cadre prédictif qui nécessite des hypothèses supplémentaires peu naturelles. Après avoir dressé un état de l'art de la classification semi-supervisée, nous décrivons l'estimation des paramètres d'un modèle de classification à l'aide de données étiquetées et non étiquetées par l'algorithme EM. Nos contributions sur la sélection de modèles font l'objet des deux chapitres suivants. Au chapitre 3, nous présentons un test statistique où les données non étiquetées sont utilisées pour mettre à l'épreuve le modèle utilisé. Au chapitre 4 nous présentons un critère de sélection de modèles AICcond, dérivé du critère AIC d'un point de vue prédictif. Nous prouvons la convergence asymptotique de ce critère particulièrement bien adapté au contexte semi-supervisé et ses bonnes performances pratiques comparé à la validation croisée et à d'autres critères de vraisemblance pénalisée.Une deuxième partie de la thèse, sans rapport direct avec le contexte semi-supervisé, présente des modèles multinomiaux pour la classification sur variables qualitatives. Nous avons conçu ces modèles pour répondre à des limitations des modèles multinomiaux parcimonieux proposés dans le logiciel MIXMOD. À cette occasion, nous proposons un critère type BIC qui prend en compte de manière spécifique la complexité de ces modèles multinomiaux contraints. / The subject of this thesis is the semi-supervised classification which is considered in decision-making perpective. We are interested in model choice issue in when models are estimated using both labeled data and many unlabeled data. We focus our research on generative models for which the semi-supervised classification is considered without difficulty, unlike predictive framework that requires additional unnatural assumptions. Having developed a state of the art of semi-supervised classification, we describe the estimation of parameters of a classification model using labeled data and unlabeled data by the EM algorithm. Our contributions on models selection closely watched in the two following chapters. In Chapter 3, we present a statistical test where unlabeled data are used to test the model. In Chapter 4 we present a model selection criterion, AICcond, derived from the AIC criterion in a predictive point of view. We prove the asymptotic convergence of this test particularly well suited to semi-supervised setting and his good practical performance compared to the cross-validation and other penalized likelihood criteria.A second part of the thesis, not directly connected with the semi-supervised setting, the multinomial models for classification of qualitative variables are considered. We designed these models to address the limitations of parsimonious multinomial models proposed in the program MIXMOD. For this setting, we propose a BIC-type criterion which takes into account specifically the complexity of the constrained multinomial models.
|
2 |
Proposition d'une méthode spectrale combinée LDA et LLE pour la réduction non-linéaire de dimension : Application à la segmentation d'images couleurs / Proposition of a new spectral method combining LDA and LLE for non-linear dimension reduction : Application to color images segmentationHijazi, Hala 19 December 2013 (has links)
Les méthodes d'analyse de données et d'apprentissage ont connu un développement très important ces dernières années. En effet, après les réseaux de neurones, les machines à noyaux (années 1990), les années 2000 ont vu l'apparition de méthodes spectrales qui ont fourni un cadre mathématique unifié pour développer des méthodes de classification originales. Parmi celles-ci ont peut citer la méthode LLE pour la réduction de dimension non linéaire et la méthode LDA pour la discrimination de classes. Une nouvelle méthode de classification est proposée dans cette thèse, méthode issue d'une combinaison des méthodes LLE et LDA. Cette méthode a donné des résultats intéressants sur des ensembles de données synthétiques. Elle permet une réduction de dimension non-linéaire suivie d'une discrimination efficace. Ensuite nous avons montré que cette méthode pouvait être étendue à l'apprentissage semi-supervisé. Les propriétés de réduction de dimension et de discrimination de cette nouvelle méthode, ainsi que la propriété de parcimonie inhérente à la méthode LLE nous ont permis de l'appliquer à la segmentation d'images couleur avec succès. La propriété d'apprentissage semi-supervisé nous a enfin permis de segmenter des images bruitées avec de bonnes performances. Ces résultats doivent être confortés mais nous pouvons d'ores et déjà dégager des perspectives de poursuite de travaux intéressantes. / Data analysis and learning methods have known a huge development during these last years. Indeed, after neural networks, kernel methods in the 90', spectral methods appeared in the years 2000. Spectral methods provide an unified mathematical framework to expand new original classification methods. Among these new techniques, two methods can be highlighted : LLE for non-linear dimension reduction and LDA as discriminating classification method. In this thesis document a new classification technique is proposed combining LLE and LDA methods. This new method makes it possible to provide efficient non-linear dimension reduction and discrimination. Then an extension of the method to semi-supervised learning is proposed. Good properties of dimension reduction and discrimination associated with the sparsity property of the LLE technique make it possible to apply our method to color images segmentation with success. Semi-supervised version of our method leads to efficient segmentation of noisy color images. These results have to be extended and compared with other state-of-the-art methods. Nevertheless interesting perspectives of this work are proposed in conclusion for future developments.
|
3 |
Estimation et sélection en classification semi-superviséeVandewalle, Vincent 09 December 2009 (has links) (PDF)
Le sujet de cette thèse est la classification semi-supervisée qui est considérée d'un point de vue décisionnel. Nous nous intéressons à la question de choix de modèles dans ce contexte où les modèles sont estimés en utilisant conjointement des données étiquetées et des données non étiquetées plus nombreuses. Nous concentrons notre recherche sur les modèles génératifs où la classification semi-supervisée s'envisage sans difficulté, contrairement au cadre prédictif qui nécessite des hypothèses supplémentaires peu naturelles. Après avoir dressé un état de l'art de la classification semi-supervisée, nous décrivons l'estimation des paramètres d'un modèle de classification à l'aide de données étiquetées et non étiquetées par l'algorithme EM. Nos contributions sur la sélection de modèles font l'objet des deux chapitres suivants. Au chapitre 3, nous présentons un test statistique où les données non étiquetées sont utilisées pour mettre à l'épreuve le modèle utilisé. Au chapitre 4 nous présentons un critère de sélection de modèles AIC_cond, dérivé du critère AIC d'un point de vue prédictif. Nous prouvons la convergence asymptotique de ce critère particulièrement bien adapté au contexte semi-supervisé et ses bonnes performances pratiques comparé à la validation croisée et à d'autres critères de vraisemblance pénalisée. Une deuxième partie de la thèse, sans rapport direct avec le contexte semi-supervisé, présente des modèles multinomiaux pour la classification sur variables qualitatives. Nous avons conçu ces modèles pour répondre à des limitations des modèles multinomiaux parcimonieux proposés dans le logiciel MIXMOD. À cette occasion, nous proposons un critère type BIC qui prend en compte de manière spécifique la complexité de ces modèles multinomiaux contraints.
|
4 |
Analyse de Signaux Sociaux pour la Modélisation de l'interaction face à faceMahdhaoui, Ammar 13 December 2010 (has links) (PDF)
Cette thèse se situe à la frontière des domaines de la reconnaissance de signaux émotionnels et de l'analyse de l'interaction sociale. Dans un premier temps, nous avons étudié une émotion non prototypique, appelée motherese, qui joue un rôle important dans l'interaction parent-enfant. Afin d'étudier cette émotion, nous avons développé un système de détection automatique des émotions basé d'abord sur l'apprentissage supervisé. Ensuite pour pallier au manque de données étiquetées, nous avons développé une approche semi-supervisée permettant une meilleure qualité de classification avec un coût inférieur. Cette approche permet de combiner des exemples étiquetés et non étiquetés pour l'apprentissage. Le système proposé est une extension de l'algorithme de co-apprentissage. Cette approche est dite multi-vue car elle consiste à combiner différentes vues (descripteur+classifieur) afin d'obtenir une prédiction unique par exemple de test. Au-delà de la reconnaissance de signaux émotionnels, il s'agit de structurer et d'interpréter les différents signaux de communication dans un contexte d'interaction face à face. Nous avons proposé un modèle computationnel de l'interaction parent-enfant. Il consiste à modéliser les réponses des enfants par rapport aux stimulations des parents. Nous avons proposé ainsi des analyses quantitative et statistique afin d'étudier l'interdépendance des signaux d'interaction et les comportements humains, en particulier le rôle de motherese pour l'engagement de l'interaction parent-enfant. Enfin, dans le but d'identifier les groupes de comportements les plus pertinents, nous avons développé une technique de regroupement automatique de signaux qui permet d'extraire les différents patterns interactifs. Cette extraction de comportements interactifs permet de discriminer différents groupes: enfants avec développement typique, autistique et avec retard mental.
|
5 |
Plug-in methods in classification / Méthodes de type plug-in en classificationChzhen, Evgenii 25 September 2019 (has links)
Ce manuscrit étudie plusieurs problèmes de classification sous contraintes. Dans ce cadre de classification, notre objectif est de construire un algorithme qui a des performances aussi bonnes que la meilleure règle de classification ayant une propriété souhaitée. Fait intéressant, les méthodes de classification de type plug-in sont bien appropriées à cet effet. De plus, il est montré que, dans plusieurs configurations, ces règles de classification peuvent exploiter des données non étiquetées, c'est-à-dire qu'elles sont construites de manière semi-supervisée. Le Chapitre 1 décrit deux cas particuliers de la classification binaire - la classification où la mesure de performance est reliée au F-score, et la classification équitable. A ces deux problèmes, des procédures semi-supervisées sont proposées. En particulier, dans le cas du F-score, il s'avère que cette méthode est optimale au sens minimax sur une classe usuelle de distributions non-paramétriques. Aussi, dans le cas de la classification équitable, la méthode proposée est consistante en terme de risque de classification, tout en satisfaisant asymptotiquement la contrainte d’égalité des chances. De plus, la procédure proposée dans ce cadre d'étude surpasse en pratique les algorithmes de pointe. Le Chapitre 3 décrit le cadre de la classification multi-classes par le biais d'ensembles de confiance. Là encore, une procédure semi-supervisée est proposée et son optimalité presque minimax est établie. Il est en outre établi qu'aucun algorithme supervisé ne peut atteindre une vitesse de convergence dite rapide. Le Chapitre 4 décrit un cas de classification multi-labels dans lequel on cherche à minimiser le taux de faux-négatifs sous réserve de contraintes de type presque sûres sur les règles de classification. Dans cette partie, deux contraintes spécifiques sont prises en compte: les classifieurs parcimonieux et ceux soumis à un contrôle des erreurs négatives à tort. Pour les premiers, un algorithme supervisé est fourni et il est montré que cet algorithme peut atteindre une vitesse de convergence rapide. Enfin, pour la seconde famille, il est montré que des hypothèses supplémentaires sont nécessaires pour obtenir des garanties théoriques sur le risque de classification / This manuscript studies several problems of constrained classification. In this frameworks of classification our goal is to construct an algorithm which performs as good as the best classifier that obeys some desired property. Plug-in type classifiers are well suited to achieve this goal. Interestingly, it is shown that in several setups these classifiers can leverage unlabeled data, that is, they are constructed in a semi-supervised manner.Chapter 2 describes two particular settings of binary classification -- classification with F-score and classification of equal opportunity. For both problems semi-supervised procedures are proposed and their theoretical properties are established. In the case of the F-score, the proposed procedure is shown to be optimal in minimax sense over a standard non-parametric class of distributions. In the case of the classification of equal opportunity the proposed algorithm is shown to be consistent in terms of the misclassification risk and its asymptotic fairness is established. Moreover, for this problem, the proposed procedure outperforms state-of-the-art algorithms in the field.Chapter 3 describes the setup of confidence set multi-class classification. Again, a semi-supervised procedure is proposed and its nearly minimax optimality is established. It is additionally shown that no supervised algorithm can achieve a so-called fast rate of convergence. In contrast, the proposed semi-supervised procedure can achieve fast rates provided that the size of the unlabeled data is sufficiently large.Chapter 4 describes a setup of multi-label classification where one aims at minimizing false negative error subject to almost sure type constraints. In this part two specific constraints are considered -- sparse predictions and predictions with the control over false negative errors. For the former, a supervised algorithm is provided and it is shown that this algorithm can achieve fast rates of convergence. For the later, it is shown that extra assumptions are necessary in order to obtain theoretical guarantees in this case
|
Page generated in 0.1136 seconds