• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

APLICAÇÃO DE SÉRIES TEMPORAIS E REDES NEURAIS EM UM AMBIENTE DE COMPUTAÇÃO EM NUVEM / APPLICATION OF TIME SERIES AND NEURAL NETWORKS IN AN CLOUD COMPUTING ENVIRONMENT

Santos, Tatiana Fernanda Mousquer dos 06 March 2014 (has links)
Cloud computing has emerged to change the way computing is offered and used. Instead of having all the necessary hardware and software to manipulate and to store their data, users just need a mechanism to access the Internet. So, the efficient provisioning on demand of computational resources is a challenge to comply with the needs of users. Thus, there is a problem related to the lack of an underlying mechanism to assist a cloud management system to maintain acceptable levels of Quality of Service (QoS) pro-actively. In this context, this work makes a comparative analysis of the predictive ability of different statistical models in seeking to define the most suitable for resource provisioning in a cloud environment. In this way, linear time series techniques namely ARIMA and ARMAX and nonlinear ones based on neural networks so-called MLP and NARX were applied on a dataset of a cluster from Google. The prediction results of usage of cpu, disk and memory shown that the NARX neural network can predict with low error the expected values, being feasible for application in a provisioning mechanism of servers in cloud computing environments. / A computação em nuvem surgiu para mudar a forma como a computação é oferecida e utilizada. Ao invés de possuir todo o hardware e software necessários para manipular e armazenar seus dados, os usuários apenas necessitam de um mecanismo que acesse a Internet. Com isso, o provisionamento eficiente de recursos computacionais sob demanda é um desafio para atender as necessidades dos usuários. Dessa forma, percebe-se que existe um problema relacionado à necessidade de mecanismos que auxiliem um sistema de gerenciamento de nuvem a manter níveis adequados de qualidade de serviço (QoS) de forma pro-ativa. Nesse contexto, este trabalho faz uma análise comparativa da capacidade de predição de diferentes modelos estatísticos com vistas a definir o mais adequado ao provisionamento de recursos em um ambiente de nuvem. Para isso, foram aplicadas técnicas de séries temporais lineares ARIMA e ARMAX e não lineares baseadas em redes neurais MLP e NARX em um dataset de um cluster de computadores da Google. Os resultados de predição de uso de cpu, memória e disco demonstraram que a rede neural NARX consegue predizer com baixo erro os valores esperados, sendo viável a sua aplicação em um mecanismo de provisionamento de servidores em ambientes de nuvem computacional

Page generated in 0.0636 seconds