• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Interactive Preference Based Multiobjective Evolutionary Algorithm For The Clustering Problem

Demirtas, Kerem 01 May 2011 (has links) (PDF)
We propose an interactive preference-based evolutionary algorithm for the clustering problem. The problem is highly combinatorial and referred to as NP-Hard in the literature. The goal of the problem is putting similar items in the same cluster and dissimilar items into different clusters according to a certain similarity measure, while maintaining some internal objectives such as compactness, connectivity or spatial separation. However, using one of these objectives is often not sufficient to detect different underlying structures in different data sets with clusters having arbitrary shapes and density variations. Thus, the current trend in the clustering literature is growing into the use of multiple objectives as the inadequacy of using a single objective is understood better. The problem is also difficult because the optimal solution is not well defined. To the best of our knowledge, all the multiobjective evolutionary algorithms for the clustering problem try to generate the whole Pareto optimal set. This may not be very useful since majority of the solutions in this set may be uninteresting when presented to the decision maker. In this study, we incorporate the preferences of the decision maker into a well known multiobjective evolutionary algorithm, namely SPEA-2, in the optimization process using reference points and achievement scalarizing functions to find the target clusters.

Page generated in 0.1082 seconds