• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coded aperture imaging application in one-sided imaging of visually obscured objects

Scott, William 17 May 2011 (has links)
The physical properties of visible light and its interaction with matter create obstructions the human eye cannot explore. High energy radiation has been used as an alternative to visible light to penetrate these concealed regions and reveal their contents. However, traditional imaging techniques require a two-sided apparatus with a radiation source and a detector on opposite sides of the concealed object. One-sided imaging of concealed objects is made possible by a technique called backscatter imaging, utilizing high energy radiation. However, the signal produced by backscatter imaging is inherently weak, which makes in- terpretation di cult. One of the most promising techniques for recovering the weak signal is the coding and decoding provided by Coded Aperture Imaging (CAI). The purpose of this study was to create and test a coded aperture imaging system using backscattered x-rays. This would enable one-sided imaging of concealed objects and demonstrate whether a portable imaging system was feasible. The results obtained from conducting a computer simulation, visi- ble light experiments, and x-ray experiments proved that the process works, however, the x-ray ux levels required were too high for a portable system, based upon the current equipment available at UOIT. / UOIT
2

BAT Slew Survey (BATSS): Slew Data Analysis for the Swift-BAT Coded Aperture Imaging Telescope

Copete, Antonio Julio 18 March 2013 (has links)
The BAT Slew Survey (BATSS) is the first wide-field survey of the hard X-ray sky (15–150 keV) with a slewing coded aperture imaging telescope. Its fine time resolution, high sensitivity and large sky coverage make it particularly well-suited for detections of transient sources with variability timescales in the \(\sim 1 sec–1 hour\) range, such as Gamma-Ray Bursts (GRBs), flaring stars and Blazars. As implemented, BATSS observations are found to be consistently more sensitive than their BAT pointing-mode counterparts, by an average of 20% over the 10 sec–3 ksec exposure range, due to intrinsic systematic differences between them. The survey’s motivation, development and implementation are presented, including a description of the software and hardware infrastructure that made this effort possible. The analysis of BATSS science data concentrates on the results of the 4.8-year BATSS GRB survey, beginning with the discovery of GRB 070326 during its preliminary testing phase. A total of nineteen (19) GRBs were detected exclusively in BATSS slews over this period, making it the largest contribution to the Swift GRB catalog from all ground-based analysis. The timing and spectral properties of prompt emission from BATSS GRBs reveal their consistency with Swift long GRBs (L-GRBs), though with instances of GRBs with unusually soft spectra or X-Ray Flashes (XRFs), GRBs near the faint end of the fluence distribution accessible to Swift-BAT, and a probable short GRB with extended emission, all uncommon traits within the general Swift GRB population. In addition, the BATSS overall detection rate of 0.49 GRBs/day of instrument time is a significant increase (45%) above the BAT pointing detection rate. This result was confirmed by a GRB detection simulation model, which further showed the increased sky coverage of slews to be the dominant effect in enhancing GRB detection probabilities. A review of lessons learned is included, with specific proposals to broaden both the number and range of astrophysical sources found in future enhancements. The BATSS survey results provide solid empirical evidence in support of an all-slewing hard X-ray survey mission, a prospect that may be realized with the launch of the proposed MIRAX-HXI mission in 2017. / Physics
3

Computational Optical Imaging Systems: Sensing Strategies, Optimization Methods, and Performance Bounds

Harmany, Zachary Taylor January 2012 (has links)
<p>The emerging theory of compressed sensing has been nothing short of a revolution in signal processing, challenging some of the longest-held ideas in signal processing and leading to the development of exciting new ways to capture and reconstruct signals and images. Although the theoretical promises of compressed sensing are manifold, its implementation in many practical applications has lagged behind the associated theoretical development. Our goal is to elevate compressed sensing from an interesting theoretical discussion to a feasible alternative to conventional imaging, a significant challenge and an exciting topic for research in signal processing. When applied to imaging, compressed sensing can be thought of as a particular case of computational imaging, which unites the design of both the sensing and reconstruction of images under one design paradigm. Computational imaging tightly fuses modeling of scene content, imaging hardware design, and the subsequent reconstruction algorithms used to recover the images. </p><p>This thesis makes important contributions to each of these three areas through two primary research directions. The first direction primarily attacks the challenges associated with designing practical imaging systems that implement incoherent measurements. Our proposed snapshot imaging architecture using compressive coded aperture imaging devices can be practically implemented, and comes equipped with theoretical recovery guarantees. It is also straightforward to extend these ideas to a video setting where careful modeling of the scene can allow for joint spatio-temporal compressive sensing. The second direction develops a host of new computational tools for photon-limited inverse problems. These situations arise with increasing frequency in modern imaging applications as we seek to drive down image acquisition times, limit excitation powers, or deliver less radiation to a patient. By an accurate statistical characterization of the measurement process in optical systems, including the inherent Poisson noise associated with photon detection, our class of algorithms is able to deliver high-fidelity images with a fraction of the required scan time, as well as enable novel methods for tissue quantification from intraoperative microendoscopy data. In short, the contributions of this dissertation are diverse, further the state-of-the-art in computational imaging, elevate compressed sensing from an interesting theory to a practical imaging methodology, and allow for effective image recovery in light-starved applications.</p> / Dissertation
4

Développement d'un imageur gamma hybride pour les applications de l'industrie nucléaire / Development of a hybrid gamma imager for nuclear industry applications

Amoyal, Guillaume 27 September 2019 (has links)
L'imagerie gamma est une technique qui permet la localisation spatiale de sources radioactives. Les différentes applications de cette technique couvrent les phases de démantèlement des installations nucléaires ou de gestion des déchets nucléaires, mais aussi la radioprotection ou la sécurité intérieure. L'utilisation de caméras gamma permet de réduire la dose reçue par les opérateurs, et, par conséquent, de respecter le principe ALARA. Il existe deux techniques d’imagerie permettant la localisation de radioéléments émetteurs gamma : l’imagerie à masque codé et l’imagerie Compton. L’imagerie à masque codé utilise la modulation spatiale du flux de photons gamma incidents par collimateur multi-trous placé entre la source et le détecteur. Elle présente l’avantage d’être extrêmement performante pour des émetteurs gamma « basses énergies », aussi bien en matière de sensibilité, qu’en matière de résolution angulaire. L'imagerie Compton, quant à elle, repose sur l’utilisation de la mécanique de diffusion Compton. L'énergie déposée pendant le processus de diffusion déterminera l'angle de diffusion, et les positions des interactions détermineront la direction des rayons gamma entrants. La position de la source radioactive peut ainsi être limitée à un cône. Si plusieurs cônes sont utilisés, alors la position où le plus grand nombre de cônes se chevauchent correspond à la position de la source radioactive. Une des limitations de cette technique concerne la localisation des émetteurs gamma « basses énergies », pour lesquels la résolution angulaire est fortement dégradée allant jusqu’à l’impossibilité complète de trouver la position. L’objectif de ces travaux est de développer un prototype d’imageur hybride associant les techniques d’imagerie à masque codé et d’imagerie Compton, afin de tirer profit des avantages de chacun des types d’imagerie. Les différents travaux menés, autour du détecteur pixellisé Timepix3, mais aussi en matière de développement d’algorithmes mathématiques, ont permis de proposer deux prototypes d’imageurs hybrides. Les résultats obtenus à l’issue de ces travaux de recherche ont permis de valider expérimentalement les performances d’un des prototypes d’imageurs et d’illustrer l’intérêt d’un système hybride. / Gamma imaging is a technique that allows the spatial localization of radioactive sources. The various applications of this technique cover decommissioning phases of nuclear facilities, nuclear waste management applications, but also radiation protection or Homeland Security. Using gamma camera reduces the dose received by operators and consequently contributes to the respect of the ALARA principle. There are two imaging techniques for the localization of gamma ray emitters: coded aperture imaging and Compton imaging. Coded aperture imaging relies on the spatial modulation of the incident gamma-ray flux by a multi-hole collimator placed between the detector and the radioactive source. It has the advantage of being extremely efficient for « low energy » gamma-ray emitters in terms of sensitivity and angular resolution. On the other hand, Compton imaging is based of the Compton scattering kinematic. The energy deposited during the scattering process will determine the scattering angle, and the positions of the interactions will determine the direction of the incoming gamma-ray. The position of the radioactive source can thus be limited to a cone. If several cones are used, then, the position where the greatest number of cones overlap corresponds to the position of the radioactive source. One limitations of this technique concerns the location of « low energy » gamma-ray emitters, for which the angular resolution is strongly degraded until it is completely not localizable. The objective of this work is to develop a prototype of hybrid imager that combines coded aperture and Compton imaging techniques in order to take advantage of each type of imaging. The different studies carried out, around the Timepix3 pixel detector, but also in the development of mathematical algorithms, have led to propose two prototypes of hybrid imager. The results obtained from this research work made it possible to validate experimentally the performance of one of the imager prototypes, and to illustrate the interest of a hybrid system.

Page generated in 0.1084 seconds