11 |
Dynamics of Carriers and Photoinjected Currents in Carbon Nanotubes and GrapheneNewson, Ryan William 23 February 2011 (has links)
This thesis reports results from the investigation of optically-induced carrier dynamics in graphite and graphitic carbon nanostructures. In this first set of experiments, the dynamics of photo-excited carriers in exfoliated graphene and thin graphitic films are studied by optical pump-probe spectroscopy. Samples ranging in thickness from 1 to 260 carbon layers are deposited onto an oxidized silicon substrate. Time-resolved reflectivity and transmissivity are measured at 1300 nm, following excitation by 150 fs, 800 nm pump pulses at room temperature. Two time scales are identified over which the extracted transient dielectric function returns to its quiescent value. A fast decay time of ~200 fs in graphene is associated with hot phonon emission and increases to ~300 fs for thicknesses greater than only a few carbon layers. The slow decay time, associated with hot phonon interaction and/or carrier recombination, increases more gradually, from ~2.5 to 5 ps over ~30 layers. A simple model suggests the thickness dependence of the slow decay time is likely a result of thermal diffusion into the substrate.
In the second set of experiments, coherently-controlled two-colour injection photocurrents are generated via quantum interference of single- and two-photon absorption in bulk graphite and a variety of single-walled carbon nanotube samples, such as a CVD-grown aligned forest of nanotubes (tube diameter dt = 2.5 ± 1.5 nm), and both arc discharge (dt = 1.44 ± 0.15 nm) and HiPco (dt = 0.96 ± 0.14 nm) nanotube films separated by electronic type (metallic vs. semiconducting). At pump wavelengths of 1500 and 750 nm, the emitted terahertz radiation is used to estimate a peak current density of ~12 kA/cm² in graphite and a peak current of ~8 nA per nanotube. From the dependence of the injected current on pump polarization, the relative values of the current injection tensor elements are measured, and information is gained on the alignment and birefringence of the nanotube samples. The dependence of the injected current on pump wavelength implies that the currents are likely based on band-band electronic transitions and not on excitonic effects, which govern most linear optical processes.
|
12 |
Dynamics of Carriers and Photoinjected Currents in Carbon Nanotubes and GrapheneNewson, Ryan William 23 February 2011 (has links)
This thesis reports results from the investigation of optically-induced carrier dynamics in graphite and graphitic carbon nanostructures. In this first set of experiments, the dynamics of photo-excited carriers in exfoliated graphene and thin graphitic films are studied by optical pump-probe spectroscopy. Samples ranging in thickness from 1 to 260 carbon layers are deposited onto an oxidized silicon substrate. Time-resolved reflectivity and transmissivity are measured at 1300 nm, following excitation by 150 fs, 800 nm pump pulses at room temperature. Two time scales are identified over which the extracted transient dielectric function returns to its quiescent value. A fast decay time of ~200 fs in graphene is associated with hot phonon emission and increases to ~300 fs for thicknesses greater than only a few carbon layers. The slow decay time, associated with hot phonon interaction and/or carrier recombination, increases more gradually, from ~2.5 to 5 ps over ~30 layers. A simple model suggests the thickness dependence of the slow decay time is likely a result of thermal diffusion into the substrate.
In the second set of experiments, coherently-controlled two-colour injection photocurrents are generated via quantum interference of single- and two-photon absorption in bulk graphite and a variety of single-walled carbon nanotube samples, such as a CVD-grown aligned forest of nanotubes (tube diameter dt = 2.5 ± 1.5 nm), and both arc discharge (dt = 1.44 ± 0.15 nm) and HiPco (dt = 0.96 ± 0.14 nm) nanotube films separated by electronic type (metallic vs. semiconducting). At pump wavelengths of 1500 and 750 nm, the emitted terahertz radiation is used to estimate a peak current density of ~12 kA/cm² in graphite and a peak current of ~8 nA per nanotube. From the dependence of the injected current on pump polarization, the relative values of the current injection tensor elements are measured, and information is gained on the alignment and birefringence of the nanotube samples. The dependence of the injected current on pump wavelength implies that the currents are likely based on band-band electronic transitions and not on excitonic effects, which govern most linear optical processes.
|
13 |
Ultrafast Quantum Control of Exciton Dynamics in Semiconductor Quantum DotsGamouras, Angela 23 September 2013 (has links)
Controlling the quantum states of charge (excitons) or spin-polarized carriers in semiconductor quantum dots (QDs) has been the focus of a considerable research effort in recent years due to the strong promise of using this approach to develop solid state quantum computing hardware. The long-term scalability of this type of quantum computing architecture is enhanced by the use of QDs emitting in the telecom band, which would exploit the established photonic infrastructure. This thesis reports the use of all optical infrared experimental techniques to control exciton dynamics in two different QD samples consisting of InAs/GaAs QDs and InAs/InP QDs within a planar microcavity. An infrared quantum control apparatus was developed and used to apply optimized shaping masks to ultrafast pulses from an optical parametric oscillator. Pulse shaping protocols designed to execute a two-qubit controlled-rotation operation on an individual semiconductor QD were demonstrated and characterized. The quantum control apparatus was then implemented in simultaneous single qubit rotations using two uncoupled, distant InAs/GaAs QDs. These optimal control experiments demonstrated high fidelity optical manipulation of exciton states in the two QDs using a single broadband laser pulse, representing a step forward on the path to a scalable QD architecture and showcasing the power of pulse shaping techniques for quantum control on solid state qubits. As an alternative to single QDs, which have very low optical signals, subsets of QDs within an ensemble can be used in quantum computing applications. To investigate the mediation of inhomogeneities in a QD ensemble, pump-probe experiments were performed on InAs/InP QDs within a dielectric Bragg stack microcavity. Two different excitation geometries showed that the angle dependence of the microcavity transmission allowed for the spectral selection of QD subsets with transition energies resonant with the cavity mode. The microcavity mitigated inhomogeneities in the ensemble while providing a basis for addressing QD subsets which could be used as distinguishable quantum bits. This thesis work shows significant advances towards an optical computing architecture using quantum states in semiconductor QDs.
|
14 |
Theoretical studies of the external vibrational control of electronic excitation transfer and its observation using polarization- and optical phase-sensitive ultrafast spectroscopyBiggs, Jason Daniel, 1978- 12 1900 (has links)
xvi, 218 p. : ill. (some col.) / Our theoretical studies involve the control of electronic energy transfer in molecular dimers through the preparation of specific vibrational coherences prior to electronic excitation. Our control strategy is based upon the fact that, following impulsive electronic excitation, nuclear motion acts to change the instantaneous energy difference between site-excited electronic states and thereby influences short-time electronic excitation transfer (EET). By inducing coherent intramolecular vibration in one of the chromophores prior to short-pulse electronic excitation, we exert external control over electronic dynamics.
As a means to monitor this coherent control over EET, we propose using multidimensional wave-packet interferometry (md-WPI). Two pairs of polarized phase-related femtosecond pulses following the control pulse would generate superpositions of coherent nuclear wave packets in optically accessible electronic states. Interference contributions to the time- and frequency-integrated fluorescence signal due to overlaps among the superposed wave packets provide amplitude-level information on the nuclear and electronic dynamics.
We test both the control strategy and its spectroscopic investigation by calculating pump-probe difference signals for various combinations of pulse polarizations. That signal is the limiting case of the control-influenced md-WPI signal in which the two pulses in the pump pulse-pair coincide, as do the two pulses in the probe pulse-pair. We present calculated pump-probe difference signals for a variety of systems including a simplified model of the covalent dimer dithia-anthracenophane (DTA) in which we treat only the weakly Franck-Condon active ν 12 anthracene vibration at 385 cm -1 . We further present calculated nl-WPI difference signals for an oriented DTA complex, which reveal amplitude-level dynamical information about the interaction of nuclear motion and electronic energy transfer.
We also present pump-probe difference signals from a model system in which a CF 3 group, whose torsional angle is strongly Franck-Condon active, has been added to the anthracene monomers which make up DTA. We make use of electronic structure calculations to find the torsional potential of the monomer, from which we calculate the spectroscopic signals of the dimer. We show that a significant measure of control over short-time EET is achievable in this system.
This dissertation includes previously published coauthored material. / Commitee in charge: Dr. Michael E. Kellman, Chair;
Dr. Jeffrey A. Cina, Advisor;
Dr. David R. Herrick;
Dr. Andrew H. Marcus;
Dr. Daniel A. Steck
|
15 |
Coherent Control of Electron Spins in Semiconductor Quantum WellsSweeney, Timothy Michael, 1978- 09 1900 (has links)
xvii, 110 p. : ill. (some col.) / Electron spin states in semiconductors feature long coherence lifetimes, which have stimulated intense interest in the use of these spins for applications in spin based electronics and quantum information processing (QIP). A principal requirement for these spins to be viable candidates in QIP is the ability to coherently control the spins on timescales much faster than the decoherence times. The ability to optically control the spin state can meet this requirement. The spin states of electrons exhibit strong radiative coupling to negatively charged exciton (trion) states, and this radiative coupling makes coherent optical control of spin states possible.
This dissertation presents experimental demonstration of coherent control of an electron spin ensemble in a two-dimensional electron gas in a CdTe quantum well. We present two complimentary techniques to optically manipulate these electron spins using a Raman transition. The first demonstration is with a single off-resonant ultrafast optical pulse. This ultrafast pulse acts like an effective magnetic field in the propagation direction of the optical pulse. The second experiment utilizes phase-locked Raman resonant pulse pairs to coherently rotate the quantum state, where the relative phase of the pulse pair sets the axis of rotation. The Raman pulse pair acts like a microwave field driving the spin states.
This research demonstrates two significant contributions to the field of coherent optical interactions with semiconductors. First, we have advanced the potential use of electron spin ensembles in semiconductors for optics based quantum information processing hardware through our demonstration of coherent spin flips and complete coherent control. Second, we have experimentally realized full coherent control through the use of phase-locked Raman pulse pairs that overcomes inherent limitations of the single-pulse optical rotation technique, which is the current standard technique used in coherent control.
This dissertation includes previously published and unpublished co-authored material. / Committee in charge: Dr. Miriam Deutsch, Chairperson;
Dr. Hailin Wang, Advisor;
Dr. Steven van Enk, Member;
Dr. Raghuveer Parthasarathy, Member;
Dr. Catherine Page, Outside Member
|
16 |
DYNAMICS AND GEOMETRY IN ULTRACOLD ATOMSChenwei Lv (13117533) 19 July 2022 (has links)
<p>This dissertation focuses on emergent geometry from SU(1,1) dynamical symmetry and non-Hermitian physics. While the geometrical approach unifies distinct phenomena in Hermitian and non-Hermitian systems, it also provides distinct means of coherent control of quantum dynamics and simulating exotic spacetimes.</p>
|
17 |
The formation of ultracold rubidium molecules using ultrafast photoassociationMcCabe, David J. January 2010 (has links)
The establishment of robust laser-cooling techniques for the formation of ultracold atoms has provided a test-bed for low-temperature science, with scattering events changing character from incoherent thermal interactions to coherent quantum mechanical events. A natural extension is the pursuit of ultracold molecules in prescribed low-energy internal states. Atomic cooling techniques, however, do not generalize to the molecular regime due to the complex energy-level structure afforded by its extra degrees of motion. An indirect approach to ultracold molecule formation - photoassociation using ultrafast laser pulses - is the focus of this thesis. A broadband field associates atom pairs into a localized molecular wavepacket that evolves within the attractive excited-state potential. A suitably timed dump pulse may thus be applied to stabilize population into deeply bound ground vibrational states. This strategy may be generalized to any species whose spectroscopy matches the pulse spectrum, and offers a coherent population transfer scheme that does not require precise knowledge of the system. This thesis presents experiments using high-energy photoassociation pulses applied to ultracold rubidium atoms. The pulses quench the background ground-state molecular population but form bound dimers within the excited state. A pump-probe experiment was designed to chart the excited-state dynamics; however, the oscillations predicted by theoretical calculations were not evident in the molecular signal. The nature of the dynamics is expected to be strongly dependent on the initial state of the atom pairs addressed by the ultrafast pulse: a bound molecular population provides an additional candidate to free atoms. A spectroscopic measurement characterizes these bound molecules and identifies their formation mechanism. A subsequent experiment provides evidence that the predominant contributor to the pump-probe signal is the unbound initial population. The consequences with regard to both the observation of excited-state dynamics and the subsequent application of a dump pulse are discussed.
|
18 |
Ultrafast Cooperative Phenomena in Coherently Prepared Media: From Superfluorescence to Coherent Raman Scattering and ApplicationsGombojav, Ariunbold 2011 May 1900 (has links)
Technological progress in commercializing ultrafast lasers and detectors has allowed realization of cooperative processes on an ultrashort time scale, which demand a re-evaluation of the conventional cooperative phenomena with a new insight. Ultrafast cooperative phenomena in coherently prepared media and various applications of superfluorescence and coherent Raman scattering are studied in this dissertation. In particular, a simple theoretical testimony on analogy between a cooperative emission and coherent Raman scattering is presented by offering an opportunity to perform parallel research on these two processes from a unified point of view.
On one hand, the superfluorescent pulse with a time duration of a few tens of picoseconds (ps) from alkali metal vapor is observed for the first time, even though cooperative phenomena in atomic vapor have been extensively studied for more than five decades. A dense rubidium vapor pumped by ultrashort (100 femtosecond, fs) pulses allows a realization of the ultrafast superfluorescence while a time-resolved study of superfluorescence is accomplished by using a streak camera with 2 ps time resolution. Experimental research on quantum nature of cooperative emissions has been “frozen” over the years (three decades) possibly because of the technical difficulties. Quantum fluctuations of superfluorescence development are explored experimentally by taking advantage of the ultra fast streak camera. Presumable applications of the superfluorescent pulse in e.g., a remote sensing, and an ultraviolet upconversion of the input infrared laser pulse are presented. The quantum interference due to different excitation pathways is revealed by the temporal coherent control technique while observing interferometric signals from alkali metal vapors.
On the other hand, a new spectroscopic technique based on ultrafast coherent Raman scattering is developed. The key advantage of the presented technique is to suppress the non-resonant background noise which usually obscures possible applications of the other conventional coherent Raman techniques in practice. A reduction of the background noise is achieved by shaping and delaying the third pulse which probes the coherence of the medium (i.e., an enhancement of specific vibrations of the target molecules in unison) firstly prepared by two broadband pulses. We demonstrate a robustness and superiority of signal-to-noise ratio of the developed technique by identifying as few as 10000 bacterial spores at a single laser shot level.
Finally, several comparative studies between cooperative and uncooperative processes are presented. A picosecond cooperative phenomenon in a three-photon resonant medium induced by a single as well as two-color ultrashort pulses is investigated. A time-resolved study shows that a picosecond cooperative effect is crucial in the well-established fields of resonant-enhanced multiphoton ionizations and harmonic generations. We also present a quantitative analysis for spontaneous versus broadband coherent Raman scattering on pyridine molecules. The spontaneous Raman signal is enhanced by 5 orders as a result of cooperative phenomena.
|
19 |
QP Partitioning for Radiationless TransitionsLavigne, Cyrille 18 March 2014 (has links)
This work presents a new implementation of the QP algorithm, a computer method to diagonalize the extremely large matrices arising in multimode vibronic problems. Benchmark calculations are included, showing the accuracy of the program. The QP algorithm is extended to treat multiple electronic surfaces for competitive control and this is demonstrated with an Hamiltonian including three electronic states, a model of the benzene radical cation. Finally, the evolution of zeroth-order states in a simple two electronic states, two dimensional model with a conical intersection is explored, towards building a time-dependent view of overlapping resonances coherent control.
|
20 |
QP Partitioning for Radiationless TransitionsLavigne, Cyrille 18 March 2014 (has links)
This work presents a new implementation of the QP algorithm, a computer method to diagonalize the extremely large matrices arising in multimode vibronic problems. Benchmark calculations are included, showing the accuracy of the program. The QP algorithm is extended to treat multiple electronic surfaces for competitive control and this is demonstrated with an Hamiltonian including three electronic states, a model of the benzene radical cation. Finally, the evolution of zeroth-order states in a simple two electronic states, two dimensional model with a conical intersection is explored, towards building a time-dependent view of overlapping resonances coherent control.
|
Page generated in 0.0982 seconds