31 |
Controle Temporal Coerente e Manipulação da Fase Óptica na Transição de Dois Fótons em Átomos de RubídioNUNES FILHO, José Ferraz de Moura 29 May 2008 (has links)
Submitted by Isaac Francisco de Souza Dias (isaac.souzadias@ufpe.br) on 2016-03-02T19:08:33Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese José Ferraz.pdf: 2743054 bytes, checksum: 9154337dac4a587934aab71697b77a90 (MD5) / Made available in DSpace on 2016-03-02T19:08:33Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese José Ferraz.pdf: 2743054 bytes, checksum: 9154337dac4a587934aab71697b77a90 (MD5)
Previous issue date: 2008-05-29 / CNPQ / Neste trabalho, utilizamos as técnicas de controle temporal coerente e de manipulação da fase
óptica do campo óptico para investigar e controlar os diferentes caminhos quânticos induzidos
em transições de dipolo elétrico envolvendo a absorção de dois fótons no átomo de rubídio. As
transições foram excitadas por pares de pulsos de separação temporal variável e analisamos a
resposta do meio atômico em função dessa separação. Três situações experimentais são analisadas
envolvendo transições com diferentes características.
No primeiro experimento, utilizamos luz incoerente de um laser de corante com duração temporal
de nanosegundos, mas com tempo de coerência de picosegundos, para excitar a transição
de dois fótons, envolvendo níveis altamente excitados, níveis de Rydberg. A resposta do sistema
é analisada através de um processo de mistura de quatro ondas, resolvida no tempo, e a seleção
dos diferentes caminhos quânticos envolvidos no processo é feita a partir do controle da polarização
dos campos do laser incidente. Interferências na freqüência central do laser, interferências
"ópticas", e no dobro dessa freqüência, interferências quânticas, são observadas.
Nos outros dois estudos, a transição de dois fótons é excitada por pulsos com duração temporal
da ordemde 100 fentosegundos. No primeiro caso, investigamos uma transição de dois fótons pura,
entre os níveis 5S e 7S do rubídio, onde uma fase externa, dependente da freqüência, é adicionada
em um dos pulsos, enquanto o outro tem seu atraso temporal controlado. A fluorescência detectada
é uma medida direta da população do estado excitado. Novamente, um sinal interferométrico é
observado, cujo controle coerente é efetuado por uma combinação da fase externa e do atraso
temporal.
O último experimento envolve uma transição seqüencial, cuja ressonância de um fóton leva a
efeitos de propagação observados no sinal de interesse. Outro aspecto importante é que a taxa de
repetição do laser era maior que as taxas de relaxação dos níveis envolvidos, de forma que efeitos
de acumulação na população e na coerência também estão presentes. A resposta do sistema é
analisada através do processo de mistura paramétrica de quatro ondas, resolvido no tempo. O
sinal interferométrico, com controle de polarização e da freqüência de detecção, permite uma
demonstração clara da origem quântica nas interferências "ópticas". / In this work, we use the techniques of temporal coherent control and phase manipulation of the
optical field to investigate and control different quantum pathways in the two-photon absorption
in rubidium atoms. Three experimental situations are studied involving transitions with different
characteristics. In all of them, the medium response is analyzed as a function of the temporal delay
between the pulse pairs responsible for the two-photon transition.
In the first experiment, we use incoherent light from a dye laser with pulse duration in the
nanosecond scale, but with coherence time in the picosecond scale, to excite the two-photon transition,
which involves highly excited levels, Rydberg states. The system response is analyzed
through a time-resolved four-wave mixing process, and the quantum pathway selection is realized
by polarization control of the incident laser fileds. Interferences in the central laser frequency -
"optical" interferences - and at twice this frequency - quantum interferences - are observed.
In the subsequent two studies, the two-photon transition is excited with 100 fs pulses. In the
first case, we investigate a pure two-photon transition, the 5S - 7S rubidium transition, where an
external frequency depedent phase is added in one pulse, while the temporal delay of a second
pulse is controlled. We observe an interferometric signal, in which coherent control is achieved
with external phase and temporal delay combination.
The last experiment involves a sequential transition, which has a one-photon resonance that
leads to propagation effects observed in the signal. The laser repetition rate is greater than the
atomic system relaxation rates, leading to accumulation effects in the population and coherence,
which leads to important effects. A time-resolved parametric four-wave mixing is used to investigate
the system response. The interferometric signal, with polarization and detection frequency
control, allows us to clearly demonstrate the quantum origin of the "optical" interferences.
|
32 |
Coherent Control and Reconstruction of Free-Electron Quantum States in Ultrafast Electron MicroscopyPriebe, Katharina Elisabeth 19 December 2017 (has links)
No description available.
|
33 |
Multi-photon ionization studies of correlation effects in excited atomsYimeng Wang (12432081) 19 April 2022 (has links)
<p> Based on the multichannel quantum defect method and streamlined R-matrix treatment, this thesis studies the multi-photon ionization spectrum for atomic helium and barium, and explores the electronic correlations of these atoms. For the helium atom, the above-threshold-ionization spectra have been calculated, with two linearly polarized photons, two oppositely circularly polarized photons, and three linearly polarized photons. The propensity rules for the single-photon ionization and autoionizing decay have been extended into the multi-photon region, showing that the excitation rules are not always satisfied for the most prominent channel. In a separate project, based on the spontaneous two-photon decay of the helium 1s2s 1Se excited state that has a rather long lifetime, one can create photon pairs that are entangled in time, frequency, and polarization. Experimental schemes are proposed to use them as a laser source to ionize another helium. Finally, we considered the oneand two-photon pathway coherent control of atomic helium and barium near their autoionizing levels. For the helium atom, we proposed a controlling scheme that can flip 90 % of the photocurrent by a slight change of laser frequency. For the barium atom, we computed the phase lag between 6s1/2 and 5d3/2 ionization continua, which agrees with the experimental results that a previous phenomenological model failed to reproduce. Our treatment also develops formulas to describe the effects of hyperfine depolarization on multiphoton ionization processes, and it identifies resonances that had not been observed and classified in previous experiments. <br>
</p>
|
34 |
Optical eigenmodes for illumination & imagingKosmeier, Sebastian January 2013 (has links)
This thesis exploits so called “Optical Eigenmodes” (OEi) in the focal plane of an optical system. The concept of OEi is introduced and the OEi operator approach is outlined, for which quadratic measures of the light field are expressed as real eigenvalues of an Hermitian operator. As an example, the latter is employed to locally minimise the width of a focal spot. The limitations of implementing these spots with state of the art spatial beam shaping technique are explored and a selected spot with a by 40 % decreased core width is used to confocally scan an in focus pair of holes, delivering a two-point resolution enhanced by a factor of 1.3. As a second application, OEi are utilised for fullfield imaging. Therefore they are projected onto an object and for each mode a complex coupling coefficient describing the light-sample interaction is determined. The superposition of the OEi weighted with these coefficients delivers an image of the object. Compared to a point-by-point scan of the sample with the same number of probes, i.e. scanning points, the OEi image features higher spatial resolution and localisation of object features, rendering OEi imaging a compressive imaging modality. With respect to a raster scan a compression by a factor four is achieved. Compared to ghost imaging as another fullfield imaging method, 2-3 orders of magnitude less probes are required to obtain similar images. The application of OEi for imaging in transmission as well as for fluorescence and (surface enhanced) Raman spectroscopy is demonstrated. Finally, the applicability of the OEi concept for the coherent control of nanostructures is shown. For this, OEi are generated with respect to elements on a nanostructure, such as nanoantennas or nanopads. The OEi can be superimposed in order to generate an illumination of choice, for example to address one or multiple nanoelements with a defined intensity. It is shown that, compared to addressing such elements just with a focussed beam, the OEi concept reduces illumination crosstalk in addressing individual nanoelements by up to 70 %. Furthermore, a fullfield aberration correction is inherent to experimentally determined OEi, hence enabling addressing of nanoelements through turbid media.
|
35 |
Full-band Structure Calculations of Optical Injection in Semiconductors: Investigations of One-color, Two-color, and Pump-probe ScenariosRioux, Julien 11 January 2012 (has links)
Carrier, spin, charge current, and spin current injection by one- and two-color optical schemes are investigated within 30-band k·p theory. Parameters of the band model are optimized to give full-Brillouin zone band structures for GaAs and Ge that give accurate Γ-point effective masses and gyromagnetic factors and give access to the L valley, and to the E₁ and E₁+Δ₁ critical points in the linear optical absorption. Calculations of one- and two-photon carrier and spin injection and two-color current injection are performed for excitation energies in the range of 0—4 eV in GaAs and 0—3.5 eV in Ge. Significant spin and spin current injection occurs with 30% spin polarization in GaAs and Ge at photon energy matching the E₁ critical point. Further, the anisotropy and disparity of the current injection between parallel and perpendicular linearly-polarized beam configurations are calculated. For light propagating along a <111> crystal axis, anisotropic contributions in coherent current control and two-photon spin injection give rise to normal current components and in-plane spin components. In Ge, contributions from the holes to spin, electrical current, and spin current injection are investigated. Optical orientation results in 83% spin-polarized holes at the band edge. The effects of carrier dynamics in Ge are treated within a rate-equation model. The detection of spin dynamics in a pump-probe setup is considered, and the Fermi-factor approach is justified for electrons but not for holes. Carrier and current injection are further investigated in single-layer and bilayer graphene within the tight-binding model. In single-layer graphene, the linear-circular dichroism in two-photon absorption yields an absorption coefficient that is twice as large for circularly polarized light compared to linearly polarized light. Coherent current injection is largest for co-circularly polarized beams and zero for cross-circularly polarized beams. For linearly polarized beams, the magnitude of the injected current is independent of beam polarizations. In contrast, the injected current in bilayer graphene shows disparity between parallel and perpendicular configurations of the beams. The resulting angular dependence of the current is a macroscopic, measurable consequence of interlayer coupling in the bilayer.
|
36 |
Full-band Structure Calculations of Optical Injection in Semiconductors: Investigations of One-color, Two-color, and Pump-probe ScenariosRioux, Julien 11 January 2012 (has links)
Carrier, spin, charge current, and spin current injection by one- and two-color optical schemes are investigated within 30-band k·p theory. Parameters of the band model are optimized to give full-Brillouin zone band structures for GaAs and Ge that give accurate Γ-point effective masses and gyromagnetic factors and give access to the L valley, and to the E₁ and E₁+Δ₁ critical points in the linear optical absorption. Calculations of one- and two-photon carrier and spin injection and two-color current injection are performed for excitation energies in the range of 0—4 eV in GaAs and 0—3.5 eV in Ge. Significant spin and spin current injection occurs with 30% spin polarization in GaAs and Ge at photon energy matching the E₁ critical point. Further, the anisotropy and disparity of the current injection between parallel and perpendicular linearly-polarized beam configurations are calculated. For light propagating along a <111> crystal axis, anisotropic contributions in coherent current control and two-photon spin injection give rise to normal current components and in-plane spin components. In Ge, contributions from the holes to spin, electrical current, and spin current injection are investigated. Optical orientation results in 83% spin-polarized holes at the band edge. The effects of carrier dynamics in Ge are treated within a rate-equation model. The detection of spin dynamics in a pump-probe setup is considered, and the Fermi-factor approach is justified for electrons but not for holes. Carrier and current injection are further investigated in single-layer and bilayer graphene within the tight-binding model. In single-layer graphene, the linear-circular dichroism in two-photon absorption yields an absorption coefficient that is twice as large for circularly polarized light compared to linearly polarized light. Coherent current injection is largest for co-circularly polarized beams and zero for cross-circularly polarized beams. For linearly polarized beams, the magnitude of the injected current is independent of beam polarizations. In contrast, the injected current in bilayer graphene shows disparity between parallel and perpendicular configurations of the beams. The resulting angular dependence of the current is a macroscopic, measurable consequence of interlayer coupling in the bilayer.
|
37 |
Dinâmica coerente de estados quânticos em nanoestruturas semicondutoras acopladasBorges, Halyne Silva 05 August 2014 (has links)
Universidade Federal de Uberlândia / In this work we investigate theoretically the dissipative dynamics of exciton states in a
system constituted by coupled quantum dots, which in turn exhibit a great flexibility and
experimental ability to change their energy spectrum and structural geometry through of
external electric fields. In this way, the optical coherent control of charge carriers enables
the investigation of several quantum interference process, such as tunneling induced
transparency. We investigate the optical response of the quantum dot molecule considering
different optical regimes and electric field values, where the tunneling between the
dots can establish efficiently quantum destructive interference paths causing significant
changes on the optical spectrum. Using realistic experimental parameters we show that
the excitons states coupled by tunneling exhibit a controllable and enriched optical response.
In this system, we also investigate the entanglement degree between the electron
and hole, and we demonstrate through of the control of parameters such as, the applied
gate voltage, the incident laser frequency and intensity, the system goes to an asymptotic
state with a high entanglement degree, which is robust to decoherence process. / Neste trabalho investigamos teoricamente a dinâmica dissipativa de estados de éxcitons
em um sistema formado por pontos quânticos duplos, que por sua vez apresentam
uma grande flexibilidade e capacidade experimental em alterar seu espectro de energia
juntamente com sua forma estrutural por meio de campos elétricos externos. Deste modo,
o controle óptico coerente de portadores de carga nessas nanoestruturas permite a investigação
de diversos processos de interferência quântica, tais como transparência induzida
por tunelamento. Investigamos a resposta óptica da molécula quântica considerando diferentes
regimes ópticos e valores de campo elétrico, nos quais o tunelamento entre os pontos
pode estabelecer eficientemente caminhos de interferência quântica destrutiva provocando
mudanças significativas no espectro óptico. Usando parâmetros experimentais realísticos
mostramos que os estados excitônicos acoplados por tunelamento exibem uma resposta
óptica controlável e bastante enriquecida. Neste mesmo sistema, investigamos o emaranhamento
entre elétron e buraco, e demonstramos que através do controle de parâmetros
tais como, a barreira de potencial aplicada, a frequência e intensidade do laser incidente,
o sistema evolui para um estado assintótico com um alto grau de emaranhamento, que se
apresenta robusto a processos de decoerência. / Doutor em Física
|
38 |
Ultrafast dynamics of coherent intersubband polarizations in quantum wells and quantum cascade laser structuresEickemeyer, Felix 03 July 2002 (has links)
In dieser Arbeit untersuchen wir die ultraschnelle Dynamik von Ladungsträgern und kohärenten Intersubbandpolarisationen in quasi-zweidimensionalen Halbleiternanostrukturen und Halbleiterbauelementen. Insbesondere werden n-Typ modulationsdotierte multiple Quantentöpfe und Quantenkaskadenlaserstrukturen basierend auf dem Materialsystem GaAs/AlGaAs mit der Methode der ultraschnellen Spektroskopie im mittleren Infrarot (3-20 mu) studiert. Ein neuartiger experimenteller Aufbau ist entwickelt worden, der zum ersten Mal das phasen- und amplitudenkontrollierte Formen von ultraschnellen Feldtransienten im mittelinfraroten Spektralbereich erlaubt. Wir untersuchen die Möglichkeit der kohärenten Kontrolle von Intersubbandübergängen. Amplituden- und phasenkonntrollierte Feldtransienten im mittleren Infrarot, die mit unserer neuen Laserquelle erzeugt werden, induzieren resonante Intersubbandanregungen in n-Typ modulationsdotierten GaAs/AlGaAs Quantentöpfen. Die transmittierten elektrischen Feldtransienten werden mit Hilfe des ultraschnellen elektro-optischen Abtastverfahrens gemessen. Unter Anwendung zweier phasengekoppelter Mittinfarotpulse variabler relativer Phase zeigen wir erstmalig die kohärente Kontrolle an linearen Intersubbandpolarisationen mit Dephasierungszeiten unterhalb einer Pikosekunde. Eine Sättigung von mehr als 0.2 wird bei einer Mittinfrarotpulsenergie von nur 1 pJ erreicht. Es wird erstmalig ein direktes, zeitaufgelöstes Experiment an elektrisch betriebenen Quantenkaskadenstrukturen vorgestellt. Diese Untersuchung ermöglicht den Einblick in die Dynamik des Elektronentransports, der mit stationären Methoden nicht meßbar ist. Der ultraschnelle Quantentransport der Elektronen vom Injektor durch die Injektionsbarriere in das obere Lasersubband wird in Femtosekunden-Mittinfrarot-Anreg-Abtast-Experimenten untersucht. Auf diese Weise beobachten wir die ultraschnelle Sättigung und die nachfolgende Wiederherstellung des elektrisch induzierten Gains. Wir beobachten ausgeprägte Gainoszillationen bei angelegtem Vorwärtsstrom und an spektralen Positionen am Gainmaximum. Dies ist ein direkter Beweis für eine kohärente Wellenpaketspropagation vom Injektor in das obere Lasersubband mittels resonantem Tunneln trotz der hohen Ladungsträgerdichte in Quantenkaskadenlasern. Nach der Sättigung ist der elektrisch induzierte Gain bei niedrigen Gitter- und Ladungsträgertemperaturen innerhalb einer Pikosekunde vollständig wiederhergestellt. / In this thesis we investigate the ultrafast dynamics of carriers and coherent intersubband polarizations in quasi-two-dimensional semiconductor nanostructures and devices. In particular, we study n-type modulation doped multiple quantum wells and quantum cascade laser structures based on the GaAs/AlGaAs material system using ultrafast spectroscopy in the mid-infrared spectral range (3-20 mu). A novel experimental setup is developed allowing for the first time the controlled phase and amplitude shaping of ultrafast field transients in the mid-infrared wavelength range. We study the feasibility of coherent nonlinear control of intersubband polarizations. Amplitude and phase-controlled mid-infrared field transients from our new laser source induce resonant intersubband excitations in n-type modulation doped GaAs/AlGaAs quantum wells. The transmitted electric field transients are directly measured by ultrafast electro-optic sampling. We demonstrate for the first time coherent control of linear intersubband polarizations with subpicosecond dephasing times by applying two phase-locked pulses with variable relative phase. A saturation of the intersubband excitation by more than 0.2 is achieved with mid-infrared pulses of only 1 pJ pulse energy. We present for the first time a direct time-resolved experimental study on electrically driven quantum cascade laser structures. These studies provide insight into the dynamics of electron transport, which can not be obtained by stationary measurements. The ultrafast quantum transport of electrons from the injector through the injection barrier into the upper laser subband is investigated in femtosecond mid-infrared pump-probe experiments. In this way we directly monitor the ultrafast saturation and subsequent recovery of electrically induced gain. For forward bias and spectral positions around the gain maximum we observe pronounced gain oscillations. This gives direct evidence for a coherent wave packet motion from the injector into the upper laser subband via resonant tunneling even at the high electron density present in a quantum cascade laser structure. After saturation the electrically induced gain is completely recovered within 1 ps at low lattice and carrier temperatures.
|
39 |
Vers le contrôle de l'alignement et de l'orientation : théorie et expérience / Towards control of molecular alignement and orientation : an experimental and theoretical approachTehini, Ronald 13 December 2010 (has links)
Cette thèse traite du contrôle et de la caractérisation de l'alignement et de l'orientation du point de vue théorique et expérimental. L'alignement d'une molécule linéaire consiste à obtenir une probabilité élevée de localisation de l'axe internucléaire symétrique autour de l'axe de polarisation du champ tandis que l'orientation privilégie un sens particulier le long du champ. L'orientation à l'aide d'impulsions bi couleur (2+1) non résonnantes est étudiée en détail et les conditions permettant d'obtenir une orientation efficace sont examinées. Un schéma bi couleur où la deuxième harmonique est en quasi-résonance avec un niveau vibrationnel de la molécule est également étudié. Cette technique présente l'avantage d'offrir un paramètre supplémentaire à savoir l'écart à la résonance qui peut être ajusté de manière à optimiser l'orientation moléculaire. Finalement une nouvelle technique expérimentale de détection de l'alignement moléculaire est présentée. Celle-ci permet une détection monocoup de l'alignement moléculaire sur une étendue temporelle jusqu'alors inégalée. / This thesis is about the control and characterisation of the alignment and orientation of molecules by ultra short laser pulses on a theoretical and experimental approach. Alignment corresponds to a symmetric angular distribution of the molecular axis peaked along the laser field axis, whereas orientation provides an asymmetric distribution favouring one spatial direction. Orientation by sudden two-colour (2+1) pulses is studied extensively for the non resonant case and conditions required for achieving significant orientation are explored. A second two-colour scheme, where the second harmonic is in quasi resonance with a vibrational level of the molecule, is also presented and discussed. The last technique has the advantage to offer the detuning of the laser frequency as an additional free parameter, which can be adjusted to enhance molecular orientation. A new experimental polarization imaging 2D technique for the detection alignment is also developed. Experimental results on single shot detection of molecular alignment achieved over an unprecedented temporal span are presented.
|
Page generated in 0.0891 seconds