• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 26
  • 8
  • 1
  • Tagged with
  • 127
  • 63
  • 56
  • 40
  • 33
  • 31
  • 26
  • 23
  • 19
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Deux contributions à l'arithmétique des variétés : r-équivalence et cohomologie non ramifiée.

Pirutka, Alena 12 October 2011 (has links) (PDF)
Dans cette thèse, on s'intéresse à des propriétés arithmétiques de variétés algébriques. Elle contient deux parties et huit chapitres que l'on peut lire indépendamment. Dans la première partie on étudie la R-équivalence sur les points rationnels des variétés algébriques. Dans le chapitre I.1 on établit que pour certaines familles projectives et lisses X→Y de variétés géométriquement rationnelles sur un corps local k de caractéristique nulle le nombre des classes de R-équivalence de la fibre Xy(k) est localement constant quand y varie dans Y(k). Dans le chapitre I.2 on s'intéresse à des variétés rationnellement simplement connexes. On établit que la R-équivalence est triviale sur de telles variétés définies sur C(t). Dans le chapitre I.3 on introduit une autre relation d'équivalence sur les points rationnels des variétés définies sur un corps muni d'une valuation discrète et on étudie quelques propriétés de cette relation d'équivalence. Dans le chapitre I.4 on étudie la R-équivalence sur les variétés rationnellement connexes définies sur les corps réels clos ou p-adiqument clos. La deuxième partie de cette thèse est consacrée à l'étude de quelques questions liées à la cohomologie non ramifiée. Dans le chapitre II.1 on utilise le troisième groupe de cohomologie non ramifiée pour donner un exemple d'une variété projective et lisse géométriquement rationnelle X, définie sur un corps fini Fp, telle que l'application de groupes de Chow de codimension deux de la variété X dans le groupe de Chow de cycles de codimension deux sur la clôture algébrique, fixés par l'action de Galois, n'est pas surjective. Dans le chapitre II.2 on s'intéresse aux fibrations au-dessus d'une surface sur un corps fini dont la fibre générique est une variété de Severi-Brauer et on montre que le troisième groupe de cohomologie non ramifiée s'annule pour de telles variétés. Dans le chapitre II.3, on établit l'invariance birationnelle de certains termes de la suite spectrale de Bloch et Ogus pour des variétés sur un corps de dimension cohomologique bornée. Sur un corps fini, on relie un de ces invariants avec le conoyau de l'application classe de cycle l-adique pour les 1-cycles. Dans le chapitre II.4, on s'intéresse à "borner" la ramification des éléments des groupes de cohomologie Hr(K, Z/n), r>0, si K est le corps des fonctions d'une variété intègre définie sur un corps de caractéristique nulle k.
72

Capitulation des noyaux sauvages étales

Validire, Romain 24 June 2008 (has links) (PDF)
Ce travail de thèse porte sur deux problèmes distincts, tous deux en lien avec le comportement galoisien de certains noyaux de localisation en cohomologie étale : les noyaux sauvages étales. Fixons un nombre premier p et $F_{\infty}$ une $\Z_p$-extension d'un corps de nombres $F$.<br />La structure de groupe abélien du p-groupe des classes des étages de $F_{\infty}/F$ est asymptotiquement bien connue : nous montrons, au moyen de la théorie d'Iwasawa des $\Z_p$-extensions, un analogue de ce résultat en $K$-théorie supérieure.<br />Dans un deuxième temps, nous étudions le groupe de Galois sur $F_{\infty}$ de la pro-p-extension, non ramifiée, p-décomposée maximale de $F_{\infty}$, lorsque $F_{\infty}$ est la $\Z_p$-extension cyclotomique de $F$. Après avoir établi un lien entre la structure de ce groupe et le comportement galoisien des noyaux sauvages étales, nous donnons divers critères effectifs de non pro-p-liberté pour ce groupe.
73

Cohomologie quantique des grassmanniennes symplectiques impaires

Pech, Clelia 06 December 2011 (has links) (PDF)
Les grassmanniennes symplectiques impaires sont une famille d'espaces quasi-homogènes très proches des grassmanniennes symplectiques de par leur construction et leurs propriétés. Dans ce travail, j'étudie leur cohomologie classique et quantique. Pour les grassmanniennes symplectiques impaires de droites, j'obtiens une règle de Pieri quantique ainsi qu'une présentation de l'anneau de cohomologie quantique. J'en déduis la semi-simplicité de cet anneau et je détermine une collection exceptionnelle complète pour la catégorie dérivée, ce qui me permet de vérifier pour cet exemple une conjecture de Dubrovin. Dans le cas général, je démontre un principe quantique-classique pour certains invariants de Gromov-Witten de degré un. Sous réserve de l'énumérativité des invariants de degré supérieur, je prouve que la règle de Pieri quantique est entièrement déterminée par le calcul des invariants de degré un.
74

Sous-algèbres de l'algèbre de Steenrod équivariante et une propriété de détection pour la K-théorie d'Atiyah

Ricka, Nicolas 10 December 2013 (has links) (PDF)
L'objectif de ce travail est l'étude de la K-théorie réelle connexe des 2-groupes abéliens élémentaires, c'est-à-dire, pour V un 2-groupe abélien élémentaire, l'objet kR^{\star}(BV ). Cet objet contient, entre autres, la K-théorie orthogonale connexe ko et la K-théorie unitaire connexe ku des 2-groupes abéliens élémentaires, et est naturellement muni d'une structure de Z[v1]-module, où v1 désigne la classe de Bott réelle, un relèvement équivariant en K-théorie réelle de la classe de Bott en K-théorie unitaire. En utilisant des outils provenant de la théorie d'homotopie stable Z/2-équivariante, et en particulier la tour des tranches, une tour naturelle dans la catégorie stable équivariante introduite dans les travaux récents de Hill, Hopkins et Ravenel, on montre que les éléments de torsion pour la classe de Bott réelle dans la K-théorie réelle des 2-groupes abéliens élémentaires sont annulés par la multiplication par v2 1. On effectue une étude détaillée de l'algèbre de Steenrod Z/2-équivariante A, constituée des opérations en HF2-cohomologie, et de sa relation avec l'algèbre de Steenrod classique modulo 2. On exhibe en particulier, pour tout entier n, des sous-algèbres extérieures de l'algèbre de Steenrod équivariante E(\beta_0,...,\beta_n), générées par certaines opérations \beta_ i, i entier, qui est une version Z/2-équivariante de la sous algèbre de l'algèbre de Steenrod modulo 2 engendrée par les n+1 premières opérations de Milnor. On s'intéresse ensuite l'algèbre homologique relative, dans la catégorie des E(\beta_0,\beta_1)-modules, relativement au sous-anneau E(\beta_0), et on introduit des outils de calcul très généraux permettant en particulier de déterminer tous les groupes d'extension relatifs Ext(F2,HF2^{\star}(BV )). On introduit ensuite la propriété de h-détection pour une tour d'objets dans une catégorie triangulée, et on relie les propriétés de h-détection à l'estimation de la v1-torsion de la K-théorie réelle connexe. On étudie ensuite l'obstruction pour qu'une tour vérifie la propriété de h-détection, pour h = 1 ou 2. On montre ensuite que l'obstruction pour que la tour des tranches de la K-théorie réelle vérifie la propriété de 2-détection est contrôlée par Ext(F2,HF2^{\star}(BV )), qu'on a calculé précédemment. Le résultat précédent concernant la v1-torsion de la K-théorie réelle des 2-groupes abéliens élémentaires suit. Une des applications de ce résultat est une détermination explicite de kR^{\star}(BV ).
75

Une résolution projective pour le second groupe de Morava pour p ≥ 5 et applications

Lader, Olivier 31 October 2013 (has links) (PDF)
Dans les années 80, Shimomura a déterminé les groupes d'homotopie du spectre de Moore V(0) localisé par rapport à K(2) la deuxième K-théorie de Morava. Plus tard, avec les travaux de Devinatz et Hopkins est apparu une autre suite spectrale convergeant vers les précédents groupes d'homotopies. Lorsque le paramètre premier p de la théorie K(2) est supérieur ou égal à cinq, la précédente suite spectrale dégénère. Ainsi, déterminer ces groupes d'homotopie revient à calculer les groupes de cohomologie du groupe stabilisateur de Morava à coefficients dans l'anneau de Lubin-Tate modulo p. En 2007, Henn a démontré l'existence, lorsque p > 3, d'une résolution projective du groupe de Morava de longueur quatre. Dans cette thèse, nous précisons une telle résolution projective. On l'applique ensuite au calcul effectif des groupes de cohomologie à coefficients dans l'anneau de Lubin-Tate modulo p. Enfin, on donne une seconde application, en redémontrant un résultat de Hopkins non publié sur le groupe de Picard de la catégorie des spectres K(2)-locaux.
76

Relèvements de représentations galoisiennes à valeurs dans des groupes algébriques / Lifting Galois representations with values in an algebraic group

Hoang Duc, Auguste 21 October 2015 (has links)
Soient 1 -> N -> H -> H' -> 1 une suite exacte centrale de groupes algébriques sur Q_p^alg et F un corps de nombres. Etant donnée une représentation Galoisienne r' : Gal_F -> H', on s'intéresse à ses relèvements à valeurs dans H à travers le morphisme H -> H'. Un relèvement r : Gal_F -> H sera dit minimal, s'il est non-ramifié aux places où r' est non-ramifiée et est de Rham/semi-stable/cristalline aux places divisant p si r' l'est. Dans cette thèse, nous montrons l'existence de relèvements minimaux dans certains cas. / Let 1 -> N -> H -> H' -> 1 be an exact sequence of algebraic groups over Q_p^alg and F be a number field. Given a Galois representation r' : Gal_F -> H', we are interested in its lifts with values in H through the morphism H -> H'. We say a lift r : Gal_F -> H is minimal, if it is unramied at places where r' is unramified and is de Rham/semi-stable/crystalline at p-adic places if r' is so. In this thesis, we prove the existence of such minimal lifts in some cases.
77

Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne / Global and infinitesimal complex geometry of twistor spaces of hyperkähler manifolds

Pillet, Basile 13 June 2017 (has links)
L'objet de cette thèse est la construction d'objets géométriques sur une variété C paramétrant des courbes rationnelles dans l'espace des twisteurs d'une variété hyperkählérienne. On établira une correspondance entre la géométrie complexe de l'espace des twisteurs et des propriétés différentielles sur C (opérateurs différentiels et courbure de la structure riemanienne complexe héritée de la variété hyperkählérienne). Les premiers chapitres précisent le cadre et les résultats connus. Dans les chapitres 4, 5 et 6 on établit une équivalence de catégories entre fibrés triviaux en restriction à chaque droite de l'espace des twisteurs et les fibrés à connexion sur C satisfaisant une condition de courbure. Le chapitre 7 prolonge cette correspondance sur le plan cohomologique tandis que le chapitre 8 en fait l'étude infinitésimale en reliant la courbure de la connexion avec les épaississements infinitésimaux des fibrés le long des droites. / The purpose of this thesis is to construct geometric objects on a manifold C parametrizing rational curves in the twistor space of a hyperkähler manifold. We shall establish a correspondence between the complex geometry of the twistor space and some differential properties of C (differential operators and curvature of a complex riemannian structure inherited from the base hyperkähler manifold). The first chapters gather some classical results of the theory of hyperkähler manifolds and their twistor spaces. In the chapters 4, 5 and 6, we construct an equivalence of categories between bundles on the twistor space which are trivial on each line and bundles with a connexion of C satisfying certain curvature conditions. The chapter 7 extends this correspondence on the cohomological level whereas the chapter 8 explores its infinitesimal version ; it links curvature of the connexion with thickening (in the sense of LeBrun) of the bundle along the lines.
78

Deformation and Quantization of color Lie bialgebras and alpha-type cohomologies for Hom-algebras / Déformation et quantification de bialgèbres de Lie colorées et cohomologies de Hom-algèbres de type alpha

Hurle, Benedikt 04 October 2018 (has links)
La première partie de la thèse traite des déformations et quantification de bialgèbres de Lie. L'existence d'une quantification pour chaque bialgèbre de Lie a été démontrée par Etingof et Kazhdan. Dans ce travail, on s'intéresse au cas des bialgèbres de Lie colorée, c'est à dire une structure de bialgèbres de Lie sur un espace gradué par un groupe quelconque et un bicaractère. A cet effet, on adapte la preuve de Etingof et Kazhdan et on introduit une généralisation au cas coloré du grand crochet introduit par Lecomte et Roger. Par ailleurs nous définissons une cohomologie pour les algèbres et bialgèbres de Lie colorées. Dans le deuxième partie de la thèse, on considère les algèbres Hom-associatives et algèbres Hom-Lie. Une algèbre Hom-associative est définie par une multiplication et une application linéaire alpha modifiant l'associativité. On commence cette partie par rappeler des définitions et propriétés des algèbres de type Hom. Ensuite, on définit la cohomologie de Hochschild de type alpha, en donnant ses propriétés. Une étude similaire est faite dans le cas des algèbres Hom-Lie et la cohomologie de Chevalley-Eilenberg, ainsi que pour les Hom-bialgèbres et bialgèbres Hom-Lie. La théorie de déformations formelles introduite par Gerstenhaber met en lien les déformations et la cohomologie. Dans cette thèse on établit une théorie de déformations des algèbres Hom-associatives basée sur la cohomologie de Hochschild de type alpha. Il s'agit de déformer simultanément la multiplication et l'application linéaire. Par ailleurs, on explore la structure d’algèbre de Lie à homotopie près correspondante, telle que les éléments de Maurer-Cartan sont des Hom-algèbres. / In the first part of this thesis, we provide a proof that any color Lie bialgebra can be quantized. This was proved for Lie bialgebras by Etingof and Kazhdan. Here we generalize this proof to color Lie bialgebras, which are Lie bialgebras graded by an arbitrary abelian group and symmetry given by a bicharacter. Before giving the details of the proof, we first recall the definitions and basic properties of color Lie algebras and bialgebras. Also a generalization of the Grand Crochet introduced by Lecomte and Roger to the color setting is given. Using the Grand Crochet, we also provide a cohomology for color Lie bialgebras. In the second part, we study different type of Hom-algebras, especially Hom-Lie and Hom-associative algebras. Hom-algebras are algebras were the defining relations, e.g. the associativity, are twisted by a linear map alpha called structure map. We first recall the relevant definitions. Then we define a new cohomology for Hom-associative and Hom-Lie algebras called alpha-type Hochschild and Chevalley-Eilenberg cohomology respectively. We also show how these cohomologies can be used to study formal deformations, in the sense of Gerstenhaber, of Hom-associative and Hom-Lie algebras. We allow the deformation of the multiplication and the structure map. We also consider alpha type cohomologies for Hom-bialgebras. Moreover, we explore the corresponding homotopy Lie algebra structure such that the Maurer-Cartan elements are Hom-algebras.
79

Des structures affines à la géométrie de l'information / From affines structures to the Information Geometry

Byande, Paul Mirabeau 07 December 2010 (has links)
Ce mémoire traite des structures affines et de leur rapport à la géométrie de l'information. Nous y introduisons la notion de T-plongement. Il permet de montrer que l'ensemble des structures affines complètes du tore T^2 est une courbe projective de RP^2. En substituant à la contrainte topologique (compacité) une contrainte dynamique (action canonique de Aff_0(1) dans le démi-plan de Poincaré H^2)on démontre que l'ensemble S des structures Aff_0(1)-invariantes dans H^2 est une surface projective connexe dans RP^5 ne contenant aucun point complet. Un de mes résultats remarquables concerne la classification des éléments de S pour la relation d'isomorphisme.Nous exploitons un outil récent: la KV-cohomologie. Outre le rôle fondamental joué par la KV-cohomologie dans l'étude des points rigides dans certains modules des structures affines, elle nous a permis d'aborder avec succès une problématique qui est au centre de la géométrie de l'information. Cette problématique concerne la détermination des structures affines invariantes dans les variétés modèles statistiques qui sont invariantes par toute transformation non singulière de l'espace des paramètres. Celles-ci ont une signification pertinente en statistique. / This dissertation deals with modules of affinely flat structure and with their relationships between these structures and the information geometry. The so-called T-embedding is used to prove that the set of complete locally flat structures is an irreducible projective curve in RP^2. In the same way we prove that the set S of Aff_0(1)-invariant locally flat structure in H^2 is a connected projective surface in RP^5, which does not contain any complete point. We also give the classification up to isomorphism of S. We use the KV-cohomology to study the rigidity problem for locally flat structures. The main concern of information geometry is the study of geometrical invariants in statistical models. We perform the KV-cohomology to bring in control this problem.
80

Groupe de Brauer des espaces homogènes à stabilisateur non connexe et applications arithmétiques / The Brauer group of homogeneous spaces with non connected stabilizer and arithmetical applications

Lucchini Arteche, Giancarlo 29 September 2014 (has links)
Dans cette thèse, on s'intéresse au groupe de Brauer non ramifié des espaces homogènes à stabilisateur non connexe et à ses applications arithmétiques. On développe notamment différentes formules de nature algébrique et/ou arithmétique permettant de calculer explicitement, tant sur un corps fini que sur un corps de caractéristique 0, la partie algébrique du groupe de Brauer non ramifié d'un espace homogène G\G' sous un groupe linéaire G' semi-simple simplement connexe à stabilisateur fini G, le tout en donnant des exemples de calculs que l'on peut faire avec ces formules. Pour ce faire, on démontre au préalable (à l'aide d'un théorème de Gabber sur les altérations) un résultat décrivant la partie de torsion première à p du groupe de Brauer non ramifié d'une variété V lisse et géométriquement intègre sur un corps fini ou sur un corps global de caractéristique p au moyen de l'évaluation des éléments de Br(V) sur ses points locaux. Les formules pour un stabilisateur fini sont ensuite généralisées au cas d'un stabilisateur G quelconque via une réduction de la cohomologie galoisienne du groupe G à celle d'un certain sous-quotient fini. Enfin, pour K un corps global et G un K-groupe fini résoluble, on démontre sous certaines hypothèses sur une extension déployant G que l'espace homogène V:=G\G' avec G' un K-groupe semi-simple simplement connexe vérifie l'approximation faible (ces hypothèses assurant la nullité du groupe de Brauer non ramifié algébrique). On utilise une version plus précise de ce résultat pour démontrer ensuite le principe de Hasse pour des espaces homogènes X sous un K-groupe G' semi-simple simplement connexe à stabilisateur géométrique fini et résoluble, sous certaines hypothèses sur le K-lien défini par X. / This thesis studies the unramified Brauer group of homogeneous spaces with non connected stabilizer and its arithmetic applcations. In particular, we develop different formulas of algebraic and/or arithmetic nature allowing an explicit calculation, both over a finite field and over a field of characteristic 0, of the algebraic part of the unramified Brauer group of a homogeneous space G\G' under a semisimple simply connected linear group G' with finite stabilizer G. We also give examples of the calculations that can be done with these formulas. For achieving this goal, we prove beforehand (using a theorem of Gabber on alterations) a result describing the prime-to-p torsion part of the unramified Brauer group of a smooth and geometrically integral variety V over a global field of characteristic p or over a finite field by evaluating the elements of Br(V) at its local points. The formulas for finite stabilizers are later generalised to the case where the stabilizer G is any linear algebraic group using a reduction of the Galois cohomology of the group G to that of a certain finite subquotient.Finally, for a global field K and a finite solvable K-group G, we show under certain hypotheses concerning the extension splitting G that the homogeneous space V:=G\G' with G' a semi-simple simply connected K-group has the weak approximation property (the hypotheses ensuring the triviality of the unramified algebraic Brauer group). We use then a more precise version of this result to prove the Hasse principle forhomogeneous spaces X under a semi-simple simply connected K-group G' with finite solvable geometric stabilizer, under certain hypotheses concerning the K-kernel (or K-lien) defined by X.

Page generated in 0.4587 seconds