1 |
The Klimontovich description of complex plasma systems : Low frequency electrostatic modes, spectral densities of fluctuations and collision integralsTolias, Panagiotis January 2012 (has links)
Plasmas seeded with solid particulates of nanometer to micron sizes (complex plasma systems) are a ubiquitous feature of intergalactic, interstellar and planetary environments but also of plasma processing applications or even fusion devices. Their novel aspects compared with ideal multi-component plasmas stem from (i) the large number of elementary charges residing on the grain surface, (ii) the variability of the charge over mass ratio of the dust component, (iii) the inherent openness and dissipative nature of such systems. Their statistical description presents a major challenge; On one hand by treating dust grains as point particles new phase space variables must be introduced augmenting the classical Hamiltonian phase space, while the microphysics of interaction between the plasma and the grains will introduce additional coupling between the kinetic equations of each species, apart from the usual fine-grained electromagnetic field coupling. On the other hand complex plasma systems do not always exist in a gaseous state but can also condensate, i.e. form liquid, solid or crystalline states. In this thesis we study gaseous partially ionized complex plasma systems from the perspective of the Klimontovich technique of second quantization in phase space. Initially, in regimes typical of dust dynamics. Starting from the Klimontovich equations for the exact phase space densities, theory deliverables such as the permittivity, the spectral densities of fluctuations and the collision integrals are implemented either for concrete predictions related to low frequency electrostatic waves or for diagnostic purposes related to the enhancement of the ion density and electrostatic potential fluctuation spectra due to the presence of dust grains. Particular emphasis is put to the comparison of the self-consistent kinetic model with multi-component kinetic models (treating dust as an additional massive charged species) as well as to the importance of the nature of the plasma particle source. Finally, a new kinetic model of complex plasmas (for both constant and fluctuating sources) is formulated. It is valid in regimes typical of ion dynamics, where plasma discreteness can no longer be neglected, and, in contrast to earlier models, does not require relatively large dust densities to be valid. / QC 20120316
|
2 |
Calcul des coefficients de transport dans des plasmas hors de l'équilibre / Calculation of transport coefficients in plasmas out of equilibriumMahfouf, Ali 18 July 2016 (has links)
Les propriétés de transport à haute température dans les gaz et/ou dans les plasmas ont une importance capitale dans différents domaines, à savoir dans le domaine de technologie de coupure à arc, plasmas de coupure, de soudure ou de gravure. La connaissance des coefficients de transport est nécessaire pour toute modélisation faisant intervenir les équations hydrodynamiques. Dans le cadre de la théorie cinétique des gaz dilués, une solution approchée de l’équation intégro-différentielle de Boltzmann régissant les fonctions de distribution a été proposée par Chapman-Enskog. Les coefficients de transport sont calculés classiquement par la méthode de Chapman-Enskog via les intégrales de collision. Dans le cadre de notre étude nous avons développé, dans un premier temps, un code numérique permettant l’obtention de ces intégrales de collision en tenant compte des singularités qui peuvent apparaître dans le calcul des sections efficaces relatives aux interactions entre les particules constituant les gaz et/ou les plasmas. Dans un second temps nous avons étudié l’influence du choix des paramètres des potentiels d’interaction sur les coefficients de transport. Par la suite, nous avons utilisé le code numérique ainsi développé pour évaluer les coefficients de transport du plasma d’hélium en étudiant l’influence du choix de la méthode de calcul de composition chimique sur ces coefficients. Enfin, un modèle simplifié d’une interaction entre une onde électromagnétique et un plasma d’hélium a été proposé comme une application directe des coefficients de transport. / Transport properties at high temperature in gases and/or in plasmas are of very importance in various fields, namely in the field of breaking technology in arc, cutting plasma, welding or burning. Knowledge of transport coefficients is necessary for any modeling involving hydrodynamic equations. As part of the kinetic theory of diluted gas, an approximate solution of the integro-differential Boltzmann equation governing distribution functions was proposed by Chapman-Enskog. Transport coefficients are classically computed using the method of Chapman-Enskog through the collision integrals. In our study we have developed, initially, a numerical code to obtain these collision integral taking into account the singularities that may occur in the calculation of the cross sections relating to interactions between particles forming the gas and/or plasmas. Secondly, we have studied the influence of the choice of parameters of interaction potentials on transport coefficients. Subsequently, we have used the numerical code developed for evaluating and helium plasma transport coefficients by studying the influence of the choice of method for calculating chemical composition on these coefficients. Finally, a simplified model of an interaction between an electromagnetic wave and a helium plasma has been proposed as a direct application of the transport coefficients.
|
Page generated in 0.0969 seconds