• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles mathématiques pour les gaz quantiques

Allemand, Thibaut 17 December 2010 (has links) (PDF)
Cette thèse est consacrée à l'étude de différents modèles de fluides quantiques, en particulier des modèles cinétiques, et aux liens entre ces modèles. La première partie est dédiée aux gaz de bosons. Nous nous intéressons d'abord à un fluide de bosons ayant une partie condensée, modélisé par deux équations couplées : une équation de Boltzmann quantique pour la partie normale, et une équation de Gross-Pitaevskii pour la partie condensée. Nous étudions formellement la limite hydrodynamique de ce système dans le scaling hyperbolique, couplée avec une limite semi-classique, et obtenons un système du type Euler compressible à deux fluides. Nous étudions le système limite dans l'approximation isentropique : hyperbolicité, solutions faibles, chocs, simulation numérique des chocs. Nous nous intéressons dans un deuxième temps à un modèle de type Boltzmann pour les bosons unidimensionnel et homogène en espace. Après avoir prouvé l'existence de solutions, nous montrons qu'elles convergent dans la limite des collisions rasantes (et dans un sens très faible) vers des solutions d'une équation de Fokker-Planck quantique. La deuxième partie est centrée sur l'équation de Boltzmann pour les fermions. Nous montrons un résultat d'existence de solutions vérifiant la conservation locale de la masse, du moment et de l'énergie cinétique dans un domaine à bord. Nous prouvons ensuite un résultat rigoureux de limite hydrodynamique dans le scaling Euler incompressible à l'aide de la méthode de l'entropie relative couplée à des techniques de filtrage des ondes acoustiques.
2

Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires

Godinho Pereira, David 25 November 2013 (has links) (PDF)
L'objet de cette thèse est l'étude de l'asymptotique des collisions rasantes pour les équations de Kac et de Boltzmann ainsi que l'étude de la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique à l'aide d'équations différentielles stochastiques non linéaires. Le premier chapitre est consacré 'a l'équation de Kac avec un potentiel Maxwellien. Nous commençons par donner une vitesse de convergence explicite (que l'on pense être optimale) dans le cadre de l'asymptotique des collisions rasantes. Puis nous approchons la solution de l'équation de Kac dans le cadre général, ce qui nous permet de montrer la propagation du chaos pour un système de particules vers cette dernière de manière quantitative. Dans le deuxième chapitre, nous étudions l'asymptotique des collisions rasantes pour l'équation de Boltzmann avec des potentiels mous et de Coulomb. Nous donnons là encore des vitesses de convergence explicites (mais non optimales).Enfin dans le troisième et dernier chapitre, nous montrons la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique. Pour cela, nous utilisons des arguments de compacité (tension du système de particules)
3

Application de la décomposition de Littlewood-Paley à la régularité pour des équations cinétiques de type Boltzmann

El Safadi, Mouhamad 30 March 2007 (has links) (PDF)
Nous étudions la régularité des équations cinétiques de type Boltzmann. Nous nous basons essentiellement sur une méthode d'analyse harmonique de type "décomposition de Littlewood-Paley", consistant principalement à travailler avec des couronnes dyadiques. Nous nous intéressons de plus, au cadre homogène où la solution f(t,x,v) dépend uniquement du temps t et de la vitesse v, tout en travaillant avec des sections efficaces réalistes et singulières (non cutoff).<br />Dans une première partie, nous étudions le cas particulier des molécules Maxwelliennes. Sous cette hypothèse, la structure de l'opérateur de Boltzmann et de sa tranformée de Fourier s'expriment de manière simple. Nous montrons ainsi une régularité globale C^\infty.<br />Ensuite, nous traitons le cas des sections efficaces générales avec "potentiel dur". Nous nous intéressons d'abord à l'équation de Landau. C'est une équation limite de l'équation de Boltzmann prenant en compte les collisions rasantes. Nous prouvons que toute solution faible appartient à l'espace de Schwartz S. Nous démontrons ensuite une régularité identique pour le cas de l'équation de Boltzmann. Notons que notre méthode s'applique directement pour toutes les dimensions, en signalant que les preuves sont souvent plus simples comparées à d'autres preuves plus anciennes.<br />Enfin, nous terminons avec l'équation de Boltzmann-Dirac. En particulier, nous adaptons le résultat de régularité obtenu dans le travail de Alexandre, Desvillettes, Wennberg et Villani, en utilisant le taux de dissipation d'entropie relatif à l'équation de Boltzmann-Dirac.
4

Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires / Contribution to the study of Boltzmann's, Kac's and Keller-Segel's equations with non-linear stochastic differentials equations

Godinho Pereira, David 25 November 2013 (has links)
L'objet de cette thèse est l'étude de l'asymptotique des collisions rasantes pour les équations de Kac et de Boltzmann ainsi que l'étude de la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique à l'aide d'équations différentielles stochastiques non linéaires. Le premier chapitre est consacré `a l'équation de Kac avec un potentiel Maxwellien. Nous commençons par donner une vitesse de convergence explicite (que l'on pense être optimale) dans le cadre de l'asymptotique des collisions rasantes. Puis nous approchons la solution de l'équation de Kac dans le cadre général, ce qui nous permet de montrer la propagation du chaos pour un système de particules vers cette dernière de manière quantitative. Dans le deuxième chapitre, nous étudions l'asymptotique des collisions rasantes pour l'équation de Boltzmann avec des potentiels mous et de Coulomb. Nous donnons là encore des vitesses de convergence explicites (mais non optimales).Enfin dans le troisième et dernier chapitre, nous montrons la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique. Pour cela, nous utilisons des arguments de compacité (tension du système de particules) / This thesis is devoted to the study of the asymptotic of grazing collisions for Kac's and Boltzmann's equations and to the study of the chaos propagation for some sub-critical Keller-Segel equation with non-linear Stochastic Differentials Equations. The first chapter is devoted to the Kac equation with a Maxwellian potential. We start by giving an explicit rate of convergence (than we believe to be optimal) for the asymptotic of grazing collisions. Then, we approximate the solution of Kac's equation in the general case, which allows us to show the chaos propagation for some particle system to this last one in a quantitative way. In the second chapter, we study the asymptotic of grazing collisions for the Boltzmann equation with soft and Coulomb potentials. We also give explicit rates of convergence (which are not optimal).Finally in the third and last chapter, we show the chaos propagation for some sub-critical Keller-Segel equation. To this aim, we use compactness arguments (tightness of the particle system)
5

Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires

Godinho, David 25 November 2013 (has links) (PDF)
L'objet de cette thèse est l'étude de l'asymptotique des collisions rasantes pour les équations de Kac et de Boltzmann ainsi que l'étude de la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique à l'aide d'équations différentielles stochastiques non linéaires. Le premier chapitre est consacré à l'équation de Kac avec un potentiel Maxwellien. Nous commençons par donner une vitesse de convergence explicite (que l'on pense être optimale) dans le cadre de l'asymptotique des collisions rasantes. Puis nous approchons la solution de l'équation de Kac dans le cadre général, ce qui nous permet de montrer la propagation du chaos pour un système de particules vers cette dernière de manière quantitative. Dans le deuxième chapitre, nous étudions l'asymptotique des collisions rasantes pour l'équation de Boltzmann avec des potentiels mous et de Coulomb. Nous donnons là encore des vitesses de convergence explicites (mais non optimales). Enfin dans le troisième et dernier chapitre, nous montrons la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique. Pour cela, nous utilisons des arguments de compacité (tension du système de particules).
6

Théorèmes asymptotiques pour les équations de Boltzmann et de Landau

Carrapatoso, Kléber 09 December 2013 (has links) (PDF)
Nous nous intéressons dans cette thèse à la théorie cinétique et aux systèmes de particules dans le cadre des équations de Boltzmann et Landau. Premièrement, nous étudions la dérivation des équations cinétiques comme des limites de champ moyen des systèmes de particules, en utilisant le concept de propagation du chaos. Plus précisément, nous étudions les probabilités chaotiques sur l'espace de phase de ces systèmes de particules : la sphère de Boltzmann, qui correspond à l'espace de phase d'un système de particules qui évolue conservant le moment et l'énergie ; et la sphère de Kac, correspondant à un système de particules qui conserve seulement l'énergie. Ensuite, nous nous intéressons à la propagation du chaos, avec des estimations quantitatives et uniforme en temps, pour les équations de Boltzmann et Landau. Deuxièmement, nous étudions le comportement asymptotique en temps grand des solutions de l'équation de Landau.
7

Théorèmes asymptotiques pour les équations de Boltzmann et de Landau / Asymptotic theorems for Boltzmann and Landau equations

Carrapatoso, Kléber 09 December 2013 (has links)
Nous nous intéressons dans cette thèse à la théorie cinétique et aux systèmes de particules dans le cadre des équations de Boltzmann et Landau. Premièrement, nous étudions la dérivation des équations cinétiques comme des limites de champ moyen des systèmes de particules, en utilisant le concept de propagation du chaos. Plus précisément, nous étudions les probabilités chaotiques sur l'espace de phase de ces systèmes de particules : la sphère de Boltzmann, qui correspond à l'espace de phase d'un système de particules qui évolue conservant le moment et l'énergie ; et la sphère de Kac, correspondant à un système de particules qui conserve seulement l'énergie. Ensuite, nous nous intéressons à la propagation du chaos, avec des estimations quantitatives et uniforme en temps, pour les équations de Boltzmann et Landau. Deuxièmement, nous étudions le comportement asymptotique en temps grand des solutions de l'équation de Landau. / This thesis is concerned with kinetic theory and many-particle systems in the setting of Boltzmann and Landau equations. Firstly, we study the derivation of kinetic equation as mean field limits of many-particle systems, using the concept of propagation of chaos. More precisely, we study chaotic probabilities on the phase space of such particle systems : the Boltzmann's sphere, which corresponds to the phase space of a many-particle system undergoing a dynamics that conserves momentum and energy ; and the Kac's sphere, which corresponds to the energy conservation only. Then we are concerned with the propagation of chaos, with quantitative and uniform in time estimates, for Boltzmann and Landau equations. Secondly, we study the long-time behaviour of solutions to the Landau equation.

Page generated in 0.1293 seconds