Spelling suggestions: "subject:"colonização"" "subject:"valorização""
1 |
A cor no cinema silencioso do Brasil (1913-1931): produção e linguagem / -Soares, Natália de Castro 02 October 2014 (has links)
Este trabalho se dispõe a investigar o uso da cor no cinema silencioso do Brasil. Para isso, toma como fontes documentais tanto objetos fílmicos remanescentes quanto documentação e bibliografia diversas existentes sobre o assunto. Um primeiro capítulo será dedicado aos processos de colorização existentes no cinema silencioso, de uma forma geral, e a questões técnicas e estéticas relacionadas a esses processos: o contexto histórico em que surgiram as técnicas de colorização no cinema, suas origens em meios diversos, as características dessas técnicas de colorização e sua presença nos mercados cinematográficos mais conhecidos, as questões suscitadas pelo uso da cor e seus desdobramentos. No segundo capítulo, tentaremos mapear nossa prática e nossas discussões acerca da cor nos filmes do período silencioso: quais são as informações acerca das técnicas que utilizamos e da real presença de filmes coloridos em nossas sessões cinematográficas e da cor nos filmes que estávamos produzindo? Como as questões colocadas internacionalmente ecoaram no Brasil e quais foram as questões específicas que surgiram aqui? No último capítulo, trataremos mais especificamente da análise de filmes de nossa filmografia, ou seja, dos materiais em nitrato de época colorizados ainda existentes e inspecionados para esta pesquisa. Levantaremos e discutiremos as técnicas de colorização e as funções do uso da cor encontradas nesta filmografia. / This dissertation seeks to investigate the use of color in Brazil\'s silent cinema. In order to do so, it relies on documentary sources such as remaining nitrate itens and diverse existing documentation and literature on the subject. A first chapter will be devoted to existing processes in silent film colorization, in general, and to the technical and aesthetic issues related to these processes: the historical context in which the techniques of colorization arose in film, its origins in various media, the characteristics of these techniques and its presence on the most known film markets, the issues raised by the use of color and its aftermath. In the second chapter, we will attempt to map our practice and our discussions relative to color in films of the silent era: what is the information concerning the techniques we utilize and the real presence of colored movies in our cinematographic sessions and of color in movies that we were producing? In what way the questions internationally raised echoed in Brazil and what were the specific issues that have arisen here? In the last chapter, we will deal more specifically with the analysis of movies from our filmography, that is, of the colorized nitrate itens still existing and inspected for this research. We will raise and discuss techniques for coloring and functions of the use of color found in this filmography
|
2 |
A cor no cinema silencioso do Brasil (1913-1931): produção e linguagem / -Natália de Castro Soares 02 October 2014 (has links)
Este trabalho se dispõe a investigar o uso da cor no cinema silencioso do Brasil. Para isso, toma como fontes documentais tanto objetos fílmicos remanescentes quanto documentação e bibliografia diversas existentes sobre o assunto. Um primeiro capítulo será dedicado aos processos de colorização existentes no cinema silencioso, de uma forma geral, e a questões técnicas e estéticas relacionadas a esses processos: o contexto histórico em que surgiram as técnicas de colorização no cinema, suas origens em meios diversos, as características dessas técnicas de colorização e sua presença nos mercados cinematográficos mais conhecidos, as questões suscitadas pelo uso da cor e seus desdobramentos. No segundo capítulo, tentaremos mapear nossa prática e nossas discussões acerca da cor nos filmes do período silencioso: quais são as informações acerca das técnicas que utilizamos e da real presença de filmes coloridos em nossas sessões cinematográficas e da cor nos filmes que estávamos produzindo? Como as questões colocadas internacionalmente ecoaram no Brasil e quais foram as questões específicas que surgiram aqui? No último capítulo, trataremos mais especificamente da análise de filmes de nossa filmografia, ou seja, dos materiais em nitrato de época colorizados ainda existentes e inspecionados para esta pesquisa. Levantaremos e discutiremos as técnicas de colorização e as funções do uso da cor encontradas nesta filmografia. / This dissertation seeks to investigate the use of color in Brazil\'s silent cinema. In order to do so, it relies on documentary sources such as remaining nitrate itens and diverse existing documentation and literature on the subject. A first chapter will be devoted to existing processes in silent film colorization, in general, and to the technical and aesthetic issues related to these processes: the historical context in which the techniques of colorization arose in film, its origins in various media, the characteristics of these techniques and its presence on the most known film markets, the issues raised by the use of color and its aftermath. In the second chapter, we will attempt to map our practice and our discussions relative to color in films of the silent era: what is the information concerning the techniques we utilize and the real presence of colored movies in our cinematographic sessions and of color in movies that we were producing? In what way the questions internationally raised echoed in Brazil and what were the specific issues that have arisen here? In the last chapter, we will deal more specifically with the analysis of movies from our filmography, that is, of the colorized nitrate itens still existing and inspected for this research. We will raise and discuss techniques for coloring and functions of the use of color found in this filmography
|
3 |
Graph Laplacian for spectral clustering and seeded image segmentation / Estudo do Laplaciano do grafo para o problema de clusterização espectral e segmentação interativa de imagensCasaca, Wallace Correa de Oliveira 05 December 2014 (has links)
Image segmentation is an essential tool to enhance the ability of computer systems to efficiently perform elementary cognitive tasks such as detection, recognition and tracking. In this thesis we concentrate on the investigation of two fundamental topics in the context of image segmentation: spectral clustering and seeded image segmentation. We introduce two new algorithms for those topics that, in summary, rely on Laplacian-based operators, spectral graph theory, and minimization of energy functionals. The effectiveness of both segmentation algorithms is verified by visually evaluating the resulting partitions against state-of-the-art methods as well as through a variety of quantitative measures typically employed as benchmark by the image segmentation community. Our spectral-based segmentation algorithm combines image decomposition, similarity metrics, and spectral graph theory into a concise and powerful framework. An image decomposition is performed to split the input image into texture and cartoon components. Then, an affinity graph is generated and weights are assigned to the edges of the graph according to a gradient-based inner-product function. From the eigenstructure of the affinity graph, the image is partitioned through the spectral cut of the underlying graph. Moreover, the image partitioning can be improved by changing the graph weights by sketching interactively. Visual and numerical evaluation were conducted against representative spectral-based segmentation techniques using boundary and partition quality measures in the well-known BSDS dataset. Unlike most existing seed-based methods that rely on complex mathematical formulations that typically do not guarantee unique solution for the segmentation problem while still being prone to be trapped in local minima, our segmentation approach is mathematically simple to formulate, easy-to-implement, and it guarantees to produce a unique solution. Moreover, the formulation holds an anisotropic behavior, that is, pixels sharing similar attributes are preserved closer to each other while big discontinuities are naturally imposed on the boundary between image regions, thus ensuring better fitting on object boundaries. We show that the proposed approach significantly outperforms competing techniques both quantitatively as well as qualitatively, using the classical GrabCut dataset from Microsoft as a benchmark. While most of this research concentrates on the particular problem of segmenting an image, we also develop two new techniques to address the problem of image inpainting and photo colorization. Both methods couple the developed segmentation tools with other computer vision approaches in order to operate properly. / Segmentar uma image é visto nos dias de hoje como uma prerrogativa para melhorar a capacidade de sistemas de computador para realizar tarefas complexas de natureza cognitiva tais como detecção de objetos, reconhecimento de padrões e monitoramento de alvos. Esta pesquisa de doutorado visa estudar dois temas de fundamental importância no contexto de segmentação de imagens: clusterização espectral e segmentação interativa de imagens. Foram propostos dois novos algoritmos de segmentação dentro das linhas supracitadas, os quais se baseiam em operadores do Laplaciano, teoria espectral de grafos e na minimização de funcionais de energia. A eficácia de ambos os algoritmos pode ser constatada através de avaliações visuais das segmentações originadas, como também através de medidas quantitativas computadas com base nos resultados obtidos por técnicas do estado-da-arte em segmentação de imagens. Nosso primeiro algoritmo de segmentação, o qual ´e baseado na teoria espectral de grafos, combina técnicas de decomposição de imagens e medidas de similaridade em grafos em uma única e robusta ferramenta computacional. Primeiramente, um método de decomposição de imagens é aplicado para dividir a imagem alvo em duas componentes: textura e cartoon. Em seguida, um grafo de afinidade é gerado e pesos são atribuídos às suas arestas de acordo com uma função escalar proveniente de um operador de produto interno. Com base no grafo de afinidade, a imagem é então subdividida por meio do processo de corte espectral. Além disso, o resultado da segmentação pode ser refinado de forma interativa, mudando-se, desta forma, os pesos do grafo base. Experimentos visuais e numéricos foram conduzidos tomando-se por base métodos representativos do estado-da-arte e a clássica base de dados BSDS a fim de averiguar a eficiência da metodologia proposta. Ao contrário de grande parte dos métodos existentes de segmentação interativa, os quais são modelados por formulações matemáticas complexas que normalmente não garantem solução única para o problema de segmentação, nossa segunda metodologia aqui proposta é matematicamente simples de ser interpretada, fácil de implementar e ainda garante unicidade de solução. Além disso, o método proposto possui um comportamento anisotrópico, ou seja, pixels semelhantes são preservados mais próximos uns dos outros enquanto descontinuidades bruscas são impostas entre regiões da imagem onde as bordas são mais salientes. Como no caso anterior, foram realizadas diversas avaliações qualitativas e quantitativas envolvendo nossa técnica e métodos do estado-da-arte, tomando-se como referência a base de dados GrabCut da Microsoft. Enquanto a maior parte desta pesquisa de doutorado concentra-se no problema específico de segmentar imagens, como conteúdo complementar de pesquisa foram propostas duas novas técnicas para tratar o problema de retoque digital e colorização de imagens.
|
4 |
Graph Laplacian for spectral clustering and seeded image segmentation / Estudo do Laplaciano do grafo para o problema de clusterização espectral e segmentação interativa de imagensWallace Correa de Oliveira Casaca 05 December 2014 (has links)
Image segmentation is an essential tool to enhance the ability of computer systems to efficiently perform elementary cognitive tasks such as detection, recognition and tracking. In this thesis we concentrate on the investigation of two fundamental topics in the context of image segmentation: spectral clustering and seeded image segmentation. We introduce two new algorithms for those topics that, in summary, rely on Laplacian-based operators, spectral graph theory, and minimization of energy functionals. The effectiveness of both segmentation algorithms is verified by visually evaluating the resulting partitions against state-of-the-art methods as well as through a variety of quantitative measures typically employed as benchmark by the image segmentation community. Our spectral-based segmentation algorithm combines image decomposition, similarity metrics, and spectral graph theory into a concise and powerful framework. An image decomposition is performed to split the input image into texture and cartoon components. Then, an affinity graph is generated and weights are assigned to the edges of the graph according to a gradient-based inner-product function. From the eigenstructure of the affinity graph, the image is partitioned through the spectral cut of the underlying graph. Moreover, the image partitioning can be improved by changing the graph weights by sketching interactively. Visual and numerical evaluation were conducted against representative spectral-based segmentation techniques using boundary and partition quality measures in the well-known BSDS dataset. Unlike most existing seed-based methods that rely on complex mathematical formulations that typically do not guarantee unique solution for the segmentation problem while still being prone to be trapped in local minima, our segmentation approach is mathematically simple to formulate, easy-to-implement, and it guarantees to produce a unique solution. Moreover, the formulation holds an anisotropic behavior, that is, pixels sharing similar attributes are preserved closer to each other while big discontinuities are naturally imposed on the boundary between image regions, thus ensuring better fitting on object boundaries. We show that the proposed approach significantly outperforms competing techniques both quantitatively as well as qualitatively, using the classical GrabCut dataset from Microsoft as a benchmark. While most of this research concentrates on the particular problem of segmenting an image, we also develop two new techniques to address the problem of image inpainting and photo colorization. Both methods couple the developed segmentation tools with other computer vision approaches in order to operate properly. / Segmentar uma image é visto nos dias de hoje como uma prerrogativa para melhorar a capacidade de sistemas de computador para realizar tarefas complexas de natureza cognitiva tais como detecção de objetos, reconhecimento de padrões e monitoramento de alvos. Esta pesquisa de doutorado visa estudar dois temas de fundamental importância no contexto de segmentação de imagens: clusterização espectral e segmentação interativa de imagens. Foram propostos dois novos algoritmos de segmentação dentro das linhas supracitadas, os quais se baseiam em operadores do Laplaciano, teoria espectral de grafos e na minimização de funcionais de energia. A eficácia de ambos os algoritmos pode ser constatada através de avaliações visuais das segmentações originadas, como também através de medidas quantitativas computadas com base nos resultados obtidos por técnicas do estado-da-arte em segmentação de imagens. Nosso primeiro algoritmo de segmentação, o qual ´e baseado na teoria espectral de grafos, combina técnicas de decomposição de imagens e medidas de similaridade em grafos em uma única e robusta ferramenta computacional. Primeiramente, um método de decomposição de imagens é aplicado para dividir a imagem alvo em duas componentes: textura e cartoon. Em seguida, um grafo de afinidade é gerado e pesos são atribuídos às suas arestas de acordo com uma função escalar proveniente de um operador de produto interno. Com base no grafo de afinidade, a imagem é então subdividida por meio do processo de corte espectral. Além disso, o resultado da segmentação pode ser refinado de forma interativa, mudando-se, desta forma, os pesos do grafo base. Experimentos visuais e numéricos foram conduzidos tomando-se por base métodos representativos do estado-da-arte e a clássica base de dados BSDS a fim de averiguar a eficiência da metodologia proposta. Ao contrário de grande parte dos métodos existentes de segmentação interativa, os quais são modelados por formulações matemáticas complexas que normalmente não garantem solução única para o problema de segmentação, nossa segunda metodologia aqui proposta é matematicamente simples de ser interpretada, fácil de implementar e ainda garante unicidade de solução. Além disso, o método proposto possui um comportamento anisotrópico, ou seja, pixels semelhantes são preservados mais próximos uns dos outros enquanto descontinuidades bruscas são impostas entre regiões da imagem onde as bordas são mais salientes. Como no caso anterior, foram realizadas diversas avaliações qualitativas e quantitativas envolvendo nossa técnica e métodos do estado-da-arte, tomando-se como referência a base de dados GrabCut da Microsoft. Enquanto a maior parte desta pesquisa de doutorado concentra-se no problema específico de segmentar imagens, como conteúdo complementar de pesquisa foram propostas duas novas técnicas para tratar o problema de retoque digital e colorização de imagens.
|
5 |
Duas abordagens para casamento de padrões de pontos usando relações espaciais e casamento entre grafos / Two approaches for point set matching using spatial relations for graph matchingNoma, Alexandre 07 July 2010 (has links)
Casamento de padrões de pontos é um problema fundamental em reconhecimento de padrões. O objetivo é encontrar uma correspondência entre dois conjuntos de pontos, associados a características relevantes de objetos ou entidades, mapeando os pontos de um conjunto no outro. Este problema está associado a muitas aplicações, como por exemplo, reconhecimento de objetos baseado em modelos, imagens estéreo, registro de imagens, biometria, entre outros. Para encontrar um mapeamento, os objetos são codificados por representações abstratas, codificando as características relevantes consideradas na comparação entre pares de objetos. Neste trabalho, objetos são representados por grafos, codificando tanto as características `locais\' quanto as relações espaciais entre estas características. A comparação entre objetos é guiada por uma formulação de atribuição quadrática, que é um problema NP-difícil. Para estimar uma solução, duas técnicas de casamento entre grafos são propostas: uma baseada em grafos auxiliares, chamados de grafos deformados; e outra baseada em representações `esparsas\', campos aleatórios de Markov e propagação de crenças. Devido as suas respectivas limitações, as abordagens são adequadas para situações específicas, conforme mostrado neste documento. Resultados envolvendo as duas abordagens são ilustrados em quatro importantes aplicações: casamento de imagens de gel eletroforese 2D, segmentação interativa de imagens naturais, casamento de formas, e colorização assistida por computador. / Point set matching is a fundamental problem in pattern recognition. The goal is to match two sets of points, associated to relevant features of objects or entities, by finding a mapping, or a correspondence, from one set to another set of points. This issue arises in many applications, e.g. model-based object recognition, stereo matching, image registration, biometrics, among others. In order to find a mapping, the objects can be encoded by abstract representations, carrying relevant features which are taken into account to compare pairs of objects. In this work, graphs are adopted to represent the objects, encoding their `local\' features and the spatial relations between these features. The comparison of two given objects is guided by a quadratic assignment formulation, which is NP-hard. In order to estimate the optimal solution, two approximations techniques, via graph matching, are proposed: one is based on auxiliary graphs, called deformed graphs; the other is based on `sparse\' representations, Markov random fields and belief propagation. Due to their respective limitations, each approach is more suitable to each specific situation, as shown in this document. The quality of the two approaches is illustrated on four important applications: 2D electrophoresis gel matching, interactive natural image segmentation, shape matching, and computer-assisted colorization.
|
6 |
Duas abordagens para casamento de padrões de pontos usando relações espaciais e casamento entre grafos / Two approaches for point set matching using spatial relations for graph matchingAlexandre Noma 07 July 2010 (has links)
Casamento de padrões de pontos é um problema fundamental em reconhecimento de padrões. O objetivo é encontrar uma correspondência entre dois conjuntos de pontos, associados a características relevantes de objetos ou entidades, mapeando os pontos de um conjunto no outro. Este problema está associado a muitas aplicações, como por exemplo, reconhecimento de objetos baseado em modelos, imagens estéreo, registro de imagens, biometria, entre outros. Para encontrar um mapeamento, os objetos são codificados por representações abstratas, codificando as características relevantes consideradas na comparação entre pares de objetos. Neste trabalho, objetos são representados por grafos, codificando tanto as características `locais\' quanto as relações espaciais entre estas características. A comparação entre objetos é guiada por uma formulação de atribuição quadrática, que é um problema NP-difícil. Para estimar uma solução, duas técnicas de casamento entre grafos são propostas: uma baseada em grafos auxiliares, chamados de grafos deformados; e outra baseada em representações `esparsas\', campos aleatórios de Markov e propagação de crenças. Devido as suas respectivas limitações, as abordagens são adequadas para situações específicas, conforme mostrado neste documento. Resultados envolvendo as duas abordagens são ilustrados em quatro importantes aplicações: casamento de imagens de gel eletroforese 2D, segmentação interativa de imagens naturais, casamento de formas, e colorização assistida por computador. / Point set matching is a fundamental problem in pattern recognition. The goal is to match two sets of points, associated to relevant features of objects or entities, by finding a mapping, or a correspondence, from one set to another set of points. This issue arises in many applications, e.g. model-based object recognition, stereo matching, image registration, biometrics, among others. In order to find a mapping, the objects can be encoded by abstract representations, carrying relevant features which are taken into account to compare pairs of objects. In this work, graphs are adopted to represent the objects, encoding their `local\' features and the spatial relations between these features. The comparison of two given objects is guided by a quadratic assignment formulation, which is NP-hard. In order to estimate the optimal solution, two approximations techniques, via graph matching, are proposed: one is based on auxiliary graphs, called deformed graphs; the other is based on `sparse\' representations, Markov random fields and belief propagation. Due to their respective limitations, each approach is more suitable to each specific situation, as shown in this document. The quality of the two approaches is illustrated on four important applications: 2D electrophoresis gel matching, interactive natural image segmentation, shape matching, and computer-assisted colorization.
|
Page generated in 0.0521 seconds