• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Invenire: um método evolucionário para combinar resultados das técnicas de sistemas de recomendação baseado em filtragem colaborativa / Invenire: an evolutionary approach for combining results of recommender systems techniques based on collaborative filtering

Silva, Edjalma Queiroz da 20 August 2014 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-12-18T18:42:03Z No. of bitstreams: 2 Dissertacao - Edjalma Queiroz da Silva - 2014.pdf: 3244366 bytes, checksum: 7c2506e59c6f1ebdc4608a6ff2ac207d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-12-22T11:15:25Z (GMT) No. of bitstreams: 2 Dissertacao - Edjalma Queiroz da Silva - 2014.pdf: 3244366 bytes, checksum: 7c2506e59c6f1ebdc4608a6ff2ac207d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-12-22T11:15:25Z (GMT). No. of bitstreams: 2 Dissertacao - Edjalma Queiroz da Silva - 2014.pdf: 3244366 bytes, checksum: 7c2506e59c6f1ebdc4608a6ff2ac207d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-08-20 / Recommendation systems function as a guide, helping users to discover products of interest. There are various techniques and approaches in the literature that enable the generationofrecommendations.Thisisinterestingbecauseitemphasizesthediversityof options;ontheotherhand,itcancausedoubtthesystemdesigneraboutwhichisthebest techniquetouse.Eachoftheseapproacheshasparticularitiesanddependsonthecontext to be applied. Therefore, the decision to choose between the techniques is complex to be done manually. This work proposes an evolutionary approach for combining results of recommendation techniques (Invenire) in order to automate the choice of techniques and get fewer errors in recommendations. To evaluate the proposal, experiments were performed with a dataset from MovieLens and some Collaborative Filtering techniques. The results show that the combining methodology proposed in this paper performs better than any one collaborative filtering technique separately in the context addressed. The improvement varies from 3,6% to 118,99% depending on the technique and the experiment executed. / Sistemas de Recomendação funcionam como um conselheiro, comportando-se de tal formaaorientaraspessoasnadescobertadeprodutosdeinteresse.Existemváriastécnicas eabordagensnaliteraturaquepermitemgerarrecomendações.Issoéinteressanteporque enfatiza a diversidade de opções; por outro lado, pode causar dúvida para o projetista do sistema sobre qual é a melhor técnica para usar. Cada uma destas abordagens tem particularidades e dependem do contexto para serem aplicadas. Assim, a decisão de escolher entre técnicas se torna complexa para ser feita manualmente. Este trabalho propõe uma abordagem evolutiva para automatizar a busca pela melhor combinação de resultados de técnicas de Sistemas de Recomendação e produzir menos erros nas recomendações.Paraavaliaraproposta,foramrealizadosexperimentoscomumconjunto de dados daMovieLens e algumas das técnicas de Filtragem Colaborativa. Os resultados mostramqueametodologiadecombinação,propostanestetrabalho,temumdesempenho melhor do que qualquer uma das técnicas isoladas de filtragem colaborativa no contexto abordado.A melhora varia de3,6%a 118,99%dependendo da técnica e do experimento executado.

Page generated in 0.0933 seconds