1 |
Caracterização da qualidade e previsão dos parâmetros físico-químicos de gasolinas comerciais brasileiras através da aplicação de métodos quimiométricos em perfis (fingerprintings) espectroscópicos de ressonância magnética nuclearFlumignan, Danilo Luiz [UNESP] 20 April 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:35:06Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-04-20Bitstream added on 2014-06-13T18:46:15Z : No. of bitstreams: 1
flumignan_dl_dr_araiq.pdf: 7430377 bytes, checksum: 039ba441b6c5a41c8d7804f4d186d79c (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Uma das características mais interessantes da instrumentação analítica moderna é o número de variáveis que podem ser medidas simultâneamente em uma única amostra. Dentre as técnicas analíticas, a RMN 1 H e 13 C, destaca se como uma das mais importantes na análise de “fingerprintings” de misturas complexas. Por outro lado, problemas na qualidade de combustíveis comercializados, têm sido constantemente relatados, tornando relevante o desenvolvimento de novos métodos de análise alternativos que complementem os aplicados atualmente. No Brasil a qualidade da gasolina comercial é regulamentada pela Resolução ANP nº 309. A seleção das amostras mensais de gasolinas comerciais representativas com diferentes similaridades foi realizada por HCA, após a determinação de diversos parâmetros físico químicos estabelecidos pela Resolução ANP nº. 309, em 400 amostras coletadas durante abril a setembro de 2005 em postos revendedores da região Centro Oeste de São Paulo. A partir da amostra mais complexa, determinada por CG MS, foram otimizadas as condições de RMN 1 H (volume de amostra: 30 L, volume de solvente: 600 L e tempo de análise: 2 min), e RMN 13 C (volume de amostra: 200 L, volume de solvente: 600 L e tempo de análise: 10 min), que apresentaram razão sinal/ruído e tempo de análise adequados, contribuindo para a construção do banco de dados dos perfis espectrais. O banco de dados foi constituído das intensidades espectrais de cada perfil para cada deslocamento químico, bem como dos parâmetros físico químicos estabelecidos pela Resolução ANP nº. 309 e de suas respectivas características de qualidade. O algoritmo SIMCA RMN 1 H e SIMCA RMN 13 C mostrou que os perfis espectrais podem ser correlacionados de forma satisfatória e confiável com a qualidade das gasolinas comerciais brasileiras (sensibilidade superior a 90%)... / The most interesting features of modern instruments is the number of variables that can be measured in a single sample. The analytical techniques, one dimensional 1 H and 13 C NMR, stand out as the most important to fingerprintings analysis of complex mixtures. On the other hand, problems in Brazilian commercial fuel quality, including adulteration episodes, have been consistently reported, making relevant the development of news alternatives analytical methods in laboratories and governmental agencies. In Brazil, the gasoline quality control is regulated by ANP Resolution nº. 309. The samples selection of representative commercial gasoline was performed by HCA, after the determination of several physicochemical parameters, established by ANP Resolution nº. 309, in 400 gasoline samples collected during April to September 2005, in gas stations of the midwest region of Sao Paulo State. The most complex sample, determined by GC MS, promoted the optimization of 1 H NMR conditions (sample volume: 30 mL, solvent volume: 600 mL and analysis time: 2 min) and 13 C NMR conditions (volume Sample: 200 mL, solvent volume: 600 mL and analysis time: 10 min), whose showed adequated signal to noise ratio and time analysis, contributing for the construction of the spectral profile database. Database was composed by the intensities and chemical shift in the spectral profile, as well as by the physicochemical parameters and its respective quality characteristics. SIMCA 1 H NMR and SIMCA 13 C NMR showed satisfactory and confidential correlation between the spectral profiles and the quality of the Brazilian commercial gasoline (sensibility above 90%). Similarly, PLS 1 H NMR and PLS 13 C NMR provided satisfactory correlations in the prediction of several physicochemical parameters, in other words, showed standards erros results RMSEC, RMSEV and RMSEP with proportional intensities... (Complete abstract click electronic access below)
|
2 |
Caracterização da qualidade e previsão dos parâmetros físico-químicos de gasolinas comerciais brasileiras através da aplicação de métodos quimiométricos em perfis (fingerprintings) espectroscópicos de ressonância magnética nuclear /Flumignan, Danilo Luiz. January 2010 (has links)
Orientador: José Eduardo de Oliveira / Banca: João Olimpio Tognolli / Banca: Marcos Roberto Monteiro / Banca: Aristeu Gomes Tininis / Banca: Nelson Roberto Antoniosi Filho / Resumo: Uma das características mais interessantes da instrumentação analítica moderna é o número de variáveis que podem ser medidas simultâneamente em uma única amostra. Dentre as técnicas analíticas, a RMN 1 H e 13 C, destaca se como uma das mais importantes na análise de "fingerprintings" de misturas complexas. Por outro lado, problemas na qualidade de combustíveis comercializados, têm sido constantemente relatados, tornando relevante o desenvolvimento de novos métodos de análise alternativos que complementem os aplicados atualmente. No Brasil a qualidade da gasolina comercial é regulamentada pela Resolução ANP nº 309. A seleção das amostras mensais de gasolinas comerciais representativas com diferentes similaridades foi realizada por HCA, após a determinação de diversos parâmetros físico químicos estabelecidos pela Resolução ANP nº. 309, em 400 amostras coletadas durante abril a setembro de 2005 em postos revendedores da região Centro Oeste de São Paulo. A partir da amostra mais complexa, determinada por CG MS, foram otimizadas as condições de RMN 1 H (volume de amostra: 30 ^L, volume de solvente: 600 ^L e tempo de análise: 2 min), e RMN 13 C (volume de amostra: 200 ^L, volume de solvente: 600 ^L e tempo de análise: 10 min), que apresentaram razão sinal/ruído e tempo de análise adequados, contribuindo para a construção do banco de dados dos perfis espectrais. O banco de dados foi constituído das intensidades espectrais de cada perfil para cada deslocamento químico, bem como dos parâmetros físico químicos estabelecidos pela Resolução ANP nº. 309 e de suas respectivas características de qualidade. O algoritmo SIMCA RMN 1 H e SIMCA RMN 13 C mostrou que os perfis espectrais podem ser correlacionados de forma satisfatória e confiável com a qualidade das gasolinas comerciais brasileiras (sensibilidade superior a 90%)... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The most interesting features of modern instruments is the number of variables that can be measured in a single sample. The analytical techniques, one dimensional 1 H and 13 C NMR, stand out as the most important to fingerprintings analysis of complex mixtures. On the other hand, problems in Brazilian commercial fuel quality, including adulteration episodes, have been consistently reported, making relevant the development of news alternatives analytical methods in laboratories and governmental agencies. In Brazil, the gasoline quality control is regulated by ANP Resolution nº. 309. The samples selection of representative commercial gasoline was performed by HCA, after the determination of several physicochemical parameters, established by ANP Resolution nº. 309, in 400 gasoline samples collected during April to September 2005, in gas stations of the midwest region of Sao Paulo State. The most complex sample, determined by GC MS, promoted the optimization of 1 H NMR conditions (sample volume: 30 mL, solvent volume: 600 mL and analysis time: 2 min) and 13 C NMR conditions (volume Sample: 200 mL, solvent volume: 600 mL and analysis time: 10 min), whose showed adequated signal to noise ratio and time analysis, contributing for the construction of the spectral profile database. Database was composed by the intensities and chemical shift in the spectral profile, as well as by the physicochemical parameters and its respective quality characteristics. SIMCA 1 H NMR and SIMCA 13 C NMR showed satisfactory and confidential correlation between the spectral profiles and the quality of the Brazilian commercial gasoline (sensibility above 90%). Similarly, PLS 1 H NMR and PLS 13 C NMR provided satisfactory correlations in the prediction of several physicochemical parameters, in other words, showed standards erros results RMSEC, RMSEV and RMSEP with proportional intensities... (Complete abstract click electronic access below) / Doutor
|
3 |
A study of controlled auto ignition (CAI) combustion in internal combustion enginesMilovanović, Nebojša January 2003 (has links)
Controlled Auto Ignition (CAI) combustion is a new combustion principle in internal combustion engines which has in recent years attracted increased attention. In CAI combustion, which combines features of spark ignition (SI) and compression ignition (CI) principles, air/fuel mixture is premixed, as in SI combustion and auto-ignited by piston compression as in CI combustion. Ignition is provided in multiple points, and thus the charge gives a simultaneous energy release. This results in uniform and simultaneous auto-ignition and chemical reaction throughout the whole charge without flame propagation. CAI combustion is controlled by the chemical kinetics of air/fuel mixture with no influence of turbulence. The CAI engine offers benefits in comparison to spark ignited and compression ignited engines in higher efficiency due to elimination of throttling losses at part and idle loads. There is a possibility to use high compression ratios since it is not knock limited, and in significant lower NOx emission (≈90%) and particle matter emission (≈50%), due to much lower combustion temperature and elimination of fuel rich zones. However, there are several disadvantages of the CAI engine that limits its practical application, such as high level of hydrocarbon and carbon monoxide emissions, high peak pressures, high rates of heat release, reduced power per displacement and difficulties in starting and controlling the engine. Controlling the operation over a wide range of loads and speeds is probably the major difficulty facing CAI engines. Controlling is actually two-components as it consists of auto-ignition phasing and controlling the rates of heat release. As CAI combustion is controlled by chemical kinetics of air/fuel mixture, the auto-ignition timing and heat release rate are determined by the charge properties such as temperature, composition and pressure. Therefore, changes in engine operational parameters or in types of fuel, results in changing of the charge properties. Hence, the auto-ignition timing and the rate of heat release. The Thesis investigates a controlled auto-ignition (CAI) combustion in internal combustion engines suitable for transport applications. The CAI engine environment is simulated by using a single-zone, homogeneous reactor model with a time variable volume according to the slider-crank relationship. The model uses detailed chemical kinetics and distributed heat transfer losses according to Woschini's correlation [1]. The fundamentals of chemical kinetics, and their relationship with combustion related problems are presented. The phenomenology and principles of auto-ignition process itself and its characteristics in CAI combustion are explained. The simulation model for representing CAI engine environment is established and calibrated with respect to the experimental data. The influences of fuel composition on the auto-ignition timing and the rate of heat release in a CAI engine are investigated. The effects of engine parameters on CAI combustion in different engine concepts fuelled with various fuels are analysed. The effects of internal gas recirculation (IEGR) in controlling the auto-ignition timing and the heat release rate in a CAI engine fuelled with different fuels are investigated. The effects of variable valve timings strategy on gas exchange process in CAI engine fuelled with commercial gasoline (95RON) are analysed.
|
Page generated in 0.0905 seconds