1 |
Development of an embedded system actuator node for intergration into an IEC 61850 based substation automation applicationRetonda-Modiya, John-Charly January 2012 (has links)
Thesis submitted in fulfilment of the requirements for the degree
Master of Technology: Electrical Engineering
in the Faculty of Engineering
at the Cape Peninsula University of Technology, 2012 / The introduction of the IEC 61850 standard in substations for communication networks and
systems by the International Electrotechnical Commission (IEC) in 2003 provided the
possibility for communication between devices of different manufacturers. However, the
advent of this standard also brought about many challenges associated with it.
The challenges introduced by this fairly recent standard of communications in Substation
Automation Systems (SAS), and the need for the development of cost effective IEC 61850-
compliant devices, motivated the decision of the Centre for Substation and Energy
Management Systems within the Electrical Engineering Department of the Cape Peninsula
University of Technology to focus on the implementation of the IEC 61850 standard using an
embedded hardware platform.
The development of an IEC 61850 embedded application requires substantial knowledge in
multiple domains such as data networking, software modelling and development of Intelligent
Electronic Devices (IEDs), protection of the electrical system, system simulation and testing
methods, etc. Currently knowledge about the implementation of the IEC 61850 standard
usually resides with vendors and is not in the public domain.
The IEC 61850 standard allows for two groups of communication services between entities
within the substation automation system. One group utilizes a client-server model
accommodating services such as Reporting and Remote Switching. The second group
utilizes a peer-to-peer model for Generic Substation Event (GSE) services associated with
time-critical activities such as fast and reliable communication between Intelligent Electronic
Devices (IEDs) used for protection of the power network.
The messages associated with the GSE services are the Generic Object Oriented Substation
Event (GOOSE) messages. The use of GOOSE messages for protection of the electrical
system is very important in modern substations. Detailed knowledge of the structure of these
messages is important in instances requiring fault diagnosis to determine the cause of mal–
operation or to address interoperability concerns or when developing custom IEC 61850-
compliant devices with limited functionality.
A practical protection application (overcurrent) case study is presented where GOOSE
messages are exchanged between a commercial IED and an IEC 61850-compliant controller
based on an embedded platform. The basic data model and software development of an
actuator node for a circuit breaker is proposed using an IEC 61850 communication stack on
an embedded platform. The performance of the GOOSE messages is confirmed to be as per
the functional behaviour specified, and per the IEC 68150 standard in terms of the temporal
behaviour required.
This thesis document tables the methods, software programs, hardware interfacing and
system integration techniques that allow for the development and implementation of a low
cost IEC 61850-compliant controller unit on an embedded systems platform for the
substation automation system.
The overcurrent case study distributed between a commercial IED (SIEMENS Siprotec
device) and the actuator application developed on an embedded platform for this project
(DK60 board) is in compliance with the IEC 61850 standard and utilizing GOOSE messaging
is successfully completed both in terms of functional and temporal behaviour.
This novel research work contributes not only to the academic community, but to the
international Power Systems community as a whole.
Keywords: IEC 61850 standard, IEDs, GOOSE message, software modelling, software
development, substation automation systems, communication stack, embedded systems,
actuator.
|
Page generated in 0.1184 seconds