• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Representation Theory of Compact Inverse Semigroups

Hajji, Wadii 26 August 2011 (has links)
W. D. Munn proved that a finite dimensional representation of an inverse semigroup is equivalent to a ⋆-representation if and only if it is bounded. The first goal of this thesis will be to give new analytic proof that every finite dimensional representation of a compact inverse semigroup is equivalent to a ⋆-representation. The second goal is to parameterize all finite dimensional irreducible representations of a compact inverse semigroup in terms of maximal subgroups and order theoretic properties of the idempotent set. As a consequence, we obtain a new and simpler proof of the following theorem of Shneperman: a compact inverse semigroup has enough finite dimensional irreducible representations to separate points if and only if its idempotent set is totally disconnected. Our last theorem is the following: every norm continuous irreducible ∗-representation of a compact inverse semigroup on a Hilbert space is finite dimensional.
2

Representation Theory of Compact Inverse Semigroups

Hajji, Wadii 26 August 2011 (has links)
W. D. Munn proved that a finite dimensional representation of an inverse semigroup is equivalent to a ⋆-representation if and only if it is bounded. The first goal of this thesis will be to give new analytic proof that every finite dimensional representation of a compact inverse semigroup is equivalent to a ⋆-representation. The second goal is to parameterize all finite dimensional irreducible representations of a compact inverse semigroup in terms of maximal subgroups and order theoretic properties of the idempotent set. As a consequence, we obtain a new and simpler proof of the following theorem of Shneperman: a compact inverse semigroup has enough finite dimensional irreducible representations to separate points if and only if its idempotent set is totally disconnected. Our last theorem is the following: every norm continuous irreducible ∗-representation of a compact inverse semigroup on a Hilbert space is finite dimensional.
3

Representation Theory of Compact Inverse Semigroups

Hajji, Wadii 26 August 2011 (has links)
W. D. Munn proved that a finite dimensional representation of an inverse semigroup is equivalent to a ⋆-representation if and only if it is bounded. The first goal of this thesis will be to give new analytic proof that every finite dimensional representation of a compact inverse semigroup is equivalent to a ⋆-representation. The second goal is to parameterize all finite dimensional irreducible representations of a compact inverse semigroup in terms of maximal subgroups and order theoretic properties of the idempotent set. As a consequence, we obtain a new and simpler proof of the following theorem of Shneperman: a compact inverse semigroup has enough finite dimensional irreducible representations to separate points if and only if its idempotent set is totally disconnected. Our last theorem is the following: every norm continuous irreducible ∗-representation of a compact inverse semigroup on a Hilbert space is finite dimensional.
4

Representation Theory of Compact Inverse Semigroups

Hajji, Wadii January 2011 (has links)
W. D. Munn proved that a finite dimensional representation of an inverse semigroup is equivalent to a ⋆-representation if and only if it is bounded. The first goal of this thesis will be to give new analytic proof that every finite dimensional representation of a compact inverse semigroup is equivalent to a ⋆-representation. The second goal is to parameterize all finite dimensional irreducible representations of a compact inverse semigroup in terms of maximal subgroups and order theoretic properties of the idempotent set. As a consequence, we obtain a new and simpler proof of the following theorem of Shneperman: a compact inverse semigroup has enough finite dimensional irreducible representations to separate points if and only if its idempotent set is totally disconnected. Our last theorem is the following: every norm continuous irreducible ∗-representation of a compact inverse semigroup on a Hilbert space is finite dimensional.

Page generated in 0.0666 seconds