• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hipoeliticidade global para campos vetoriais complexos no plano / Global hypoellipticity for complex vector fields in the plane

Laguna, Renato Andrielli 17 June 2016 (has links)
Este trabalho consiste em um estudo sobre a propriedade de hipoeliticidade global para campos vetoriais complexos não singulares no plano. As órbitas de Sussmann de um tal campo desempenham um papel fundamental nesta análise. Mostramos que se todas as órbitas são unidimensionais o campo não é globalmente hipoelítico. Quando o campo apresenta uma órbita bidimensional e ao menos uma órbita unidimensional mergulhada também foi demonstrado que este campo não é globalmente hipoelítico. No caso em que o plano é a única órbita, define-se, como em Hounie (1982), uma determinada relação de equivalência entre pontos em que o campo deixa de ser elítico. As classes de equivalência desta relação são homeomorfas a um ponto, a um intervalo compacto ou a uma semirreta. Se todas as classes de equivalência são compactas, o campo é globalmente hipoelítico. Caso haja uma classe de equivalência fechada e homeomorfa a uma semirreta, o campo não é globalmente hipoelítico. / This work is a study about global hypoellipticity for nonsingular complex vector fields in the plane. Sussmanns orbits play a fundamental role in this analysis. We show that if all the orbits are one-dimensional then the vector field is not globally hypoelliptic. When there exist a two-dimensional orbit and an embedded one-dimensional one then the vector field is not globally hypoelliptic. In the case when the plane is the only orbit, one defines, as in Hounie (1982), a certain equivalence relation between points where the vector field is not elliptic. The equivalence classes are homeomorphic to a single point, a compact interval or a ray. If all the equivalence classes are compact then the vector field is globally hypoelliptic. If there exists an equivalence class that is closed and homeomorphic to a ray then the vector field is not globally hypoelliptic.
2

Hipoeliticidade global para campos vetoriais complexos no plano / Global hypoellipticity for complex vector fields in the plane

Renato Andrielli Laguna 17 June 2016 (has links)
Este trabalho consiste em um estudo sobre a propriedade de hipoeliticidade global para campos vetoriais complexos não singulares no plano. As órbitas de Sussmann de um tal campo desempenham um papel fundamental nesta análise. Mostramos que se todas as órbitas são unidimensionais o campo não é globalmente hipoelítico. Quando o campo apresenta uma órbita bidimensional e ao menos uma órbita unidimensional mergulhada também foi demonstrado que este campo não é globalmente hipoelítico. No caso em que o plano é a única órbita, define-se, como em Hounie (1982), uma determinada relação de equivalência entre pontos em que o campo deixa de ser elítico. As classes de equivalência desta relação são homeomorfas a um ponto, a um intervalo compacto ou a uma semirreta. Se todas as classes de equivalência são compactas, o campo é globalmente hipoelítico. Caso haja uma classe de equivalência fechada e homeomorfa a uma semirreta, o campo não é globalmente hipoelítico. / This work is a study about global hypoellipticity for nonsingular complex vector fields in the plane. Sussmanns orbits play a fundamental role in this analysis. We show that if all the orbits are one-dimensional then the vector field is not globally hypoelliptic. When there exist a two-dimensional orbit and an embedded one-dimensional one then the vector field is not globally hypoelliptic. In the case when the plane is the only orbit, one defines, as in Hounie (1982), a certain equivalence relation between points where the vector field is not elliptic. The equivalence classes are homeomorphic to a single point, a compact interval or a ray. If all the equivalence classes are compact then the vector field is globally hypoelliptic. If there exists an equivalence class that is closed and homeomorphic to a ray then the vector field is not globally hypoelliptic.
3

Global solvability of systems on compact surfaces / Resolubilidade global de sistemas em superfícies compactas

Zugliani, Giuliano Angelo 25 July 2014 (has links)
We are interested in studying an involutive system defined by a closed non-exact 1-form on a closed and orientable surface. Here we present a necessary condition for the global solvability of this system. We also make some particular constructions of globally solvable systems that motivate the equivalence between the global solvability and the necessary condition, for two cases involving 1-forms of the Morse type, namely, when the surface is the bitorus or when the 1-form is generic / Nosso interesse é estudar um sistema involutivo definido por uma 1-forma fechada e não-exata em uma superfície fechada e orientável. Apresentamos aqui uma condição necessária para a resolubilidade global desde sistema. Nós também construímos exemplos de sistemas globalmente resolúveis que nos permitiram fornecer a equivalência entre a resolubilidade global e a condição necessária, para dois casos envolvendo 1-formas do tipo Morse: quando a superfície é o bitoro ou quando a 1-forma é genérica
4

Global solvability of systems on compact surfaces / Resolubilidade global de sistemas em superfícies compactas

Giuliano Angelo Zugliani 25 July 2014 (has links)
We are interested in studying an involutive system defined by a closed non-exact 1-form on a closed and orientable surface. Here we present a necessary condition for the global solvability of this system. We also make some particular constructions of globally solvable systems that motivate the equivalence between the global solvability and the necessary condition, for two cases involving 1-forms of the Morse type, namely, when the surface is the bitorus or when the 1-form is generic / Nosso interesse é estudar um sistema involutivo definido por uma 1-forma fechada e não-exata em uma superfície fechada e orientável. Apresentamos aqui uma condição necessária para a resolubilidade global desde sistema. Nós também construímos exemplos de sistemas globalmente resolúveis que nos permitiram fornecer a equivalência entre a resolubilidade global e a condição necessária, para dois casos envolvendo 1-formas do tipo Morse: quando a superfície é o bitoro ou quando a 1-forma é genérica
5

Resolubilidade perto do conjunto característico para uma classe de operadores diferenciais parciais de primeira ordem / Solvability near the characteristic set for a clas of partial differential operators of the first order

Cerniauskas, Wanderley Aparecido 25 August 2014 (has links)
Seja L = ∂ /∂t + (a(x) + ib(x))∂/∂x, b ≢ 0, um campo vetorial complexo definido em A∊ = (-∊ , ∊) × S1, ∊ > 0, sendo a, b ∈ C∞((-∊ , ∊);ℝ) e (x, t) ∈ (-∊ ∊) × S1. Assuma que b-1(0) = {0}. Este trabalho trata da resolubilidade perto do conjunto característico {0} × S1; da equação Lu = pu + f, p, f ∈ C∞ (A∊). A relação entre as ordens de anulamento das funções a e b em x = 0 e certas médias da função p tem influência na resolubilidade. / Let L = ∂ /∂t + (a(x) + ib(x))∂/∂x, b ≢ 0, be a complex vector field defined in A∊ = (-∊ , ∊) × S1, ∊ > 0, where a, b ∈ C∞((-∊ , ∊);ℝ) and (x, t) ∈ (-∊ ∊) × S1. Assume that b-1(0) = {0}. This work deals with the volvability near the characteristic set {0} × S1; of equation. Lu = pu + f, p, f ∈ C∞ (A∊). The interplay between the orders of vanishing of the functions a and b at x = 0 and certain averages of the function p has influence in the solvability.
6

Resolubilidade perto do conjunto característico para uma classe de operadores diferenciais parciais de primeira ordem / Solvability near the characteristic set for a clas of partial differential operators of the first order

Wanderley Aparecido Cerniauskas 25 August 2014 (has links)
Seja L = ∂ /∂t + (a(x) + ib(x))∂/∂x, b ≢ 0, um campo vetorial complexo definido em A∊ = (-∊ , ∊) × S1, ∊ > 0, sendo a, b ∈ C∞((-∊ , ∊);ℝ) e (x, t) ∈ (-∊ ∊) × S1. Assuma que b-1(0) = {0}. Este trabalho trata da resolubilidade perto do conjunto característico {0} × S1; da equação Lu = pu + f, p, f ∈ C∞ (A∊). A relação entre as ordens de anulamento das funções a e b em x = 0 e certas médias da função p tem influência na resolubilidade. / Let L = ∂ /∂t + (a(x) + ib(x))∂/∂x, b ≢ 0, be a complex vector field defined in A∊ = (-∊ , ∊) × S1, ∊ > 0, where a, b ∈ C∞((-∊ , ∊);ℝ) and (x, t) ∈ (-∊ ∊) × S1. Assume that b-1(0) = {0}. This work deals with the volvability near the characteristic set {0} × S1; of equation. Lu = pu + f, p, f ∈ C∞ (A∊). The interplay between the orders of vanishing of the functions a and b at x = 0 and certain averages of the function p has influence in the solvability.
7

O problema de Riemann-Hilbert para campos vetoriais complexos / The Riemann-Hilbert problem for complex vector fields

Campana, Camilo 24 April 2017 (has links)
Este trabalho trata de problemas de contorno definidos no plano. O problema central desta tese é chamado Problema de Riemann-Hilbert, o qual pode ser descrito como segue. Seja L um campo vetorial complexo não singular definido em uma vizinhança do fecho de um aberto simplesmente conexo do plano com fronteira suave. O Problema de Riemann-Hilbert para o campo L consiste em obter uma solução para a equação Lu = F(x, y, u) no aberto em estudo, sendo dada uma função F mensurável. Pede-se também que a solução tenha extensão contínua até a fronteira e que satisfaça lá uma condição adicional; trabalha-se aqui no contexto das funções Hölder contínuas. Foram obtidos resultados para o problema acima no caso em que L pertence a uma classe de campos hipocomplexos. O caso clássico conhecido é quando o campo vetorial é o operador de Cauchy-Riemann, ou, mais geralmente, quando é um campo elítico. / This work deals with boundary problems in the plane. The central problem in this thesis is the so-called Riemann-Hilbert problem, which may be described as follows. Let L be a non-singular complex vector field defined on a neighborhood of the closure of a simply connected open subset of the plane having smooth boundary. The Riemann-Hilbert problem for the vector field L consists in finding a solution to the equation Lu = F(x, y, u) on the open set under study, where the given function F is measurable. It is also required that the solution have a continuous extension up to the boundary and satisfy an additional condition there. Results were obtained for the above problem when L belongs to a class of hypocomplex vector fields. The well-known classical case is the one in which the vector field under study is the Cauchy-Riemann operator, or more generally when it is an elliptic vector field.
8

Campos hipoelíticos no plano / Hypoelliptic planar vector fields

Campana, Camilo 21 February 2013 (has links)
Seja L um campo vetorial complexo não singular definido em um aberto do plano. Treves provou que se L é localmente resolúvel então L é localmente integrável. Para campos planares hipoelíticos, vale uma propriedade adicional, a saber, toda integral primeira (restrita a um aberto suficientemente pequeno) é uma aplicação injetiva (e aberta); isto, por sua vez, implica que toda solução da equação homogênea Lu = 0 é localmente da forma u = h 0 Z, com h holomorfa, sendo Z uma integral primeira do campo. O problema central de interesse desta dissertação é a questão global correspondente, ou seja, a exisatência de integrais primeiras globais injetoras e a representação dde soluções globais por composições da integral primeira com uma função holomorfa / Let L be a nonsingular complex vector field defined on an open subset of the plane. Treves proved that if L is locally solvable then L is locally integrable. For hypoelliptic planar vector fields an additional property holds, namely, every first integral (restricted to a sufficiently small open set) is an injective (and open) mapping; this, on its turn, implies that each solution of the homogeneous equation Lu = 0 is locally of the form u = h Z, where h is holomorphic and Z is a first integral of the vector eld. The central problem of interest in this work is the corresponding global question, that is, the existence of global, injective first integrals and the representation of global solutions as compositions of the first integral with a holomorphic function
9

Campos hipoelíticos no plano / Hypoelliptic planar vector fields

Camilo Campana 21 February 2013 (has links)
Seja L um campo vetorial complexo não singular definido em um aberto do plano. Treves provou que se L é localmente resolúvel então L é localmente integrável. Para campos planares hipoelíticos, vale uma propriedade adicional, a saber, toda integral primeira (restrita a um aberto suficientemente pequeno) é uma aplicação injetiva (e aberta); isto, por sua vez, implica que toda solução da equação homogênea Lu = 0 é localmente da forma u = h 0 Z, com h holomorfa, sendo Z uma integral primeira do campo. O problema central de interesse desta dissertação é a questão global correspondente, ou seja, a exisatência de integrais primeiras globais injetoras e a representação dde soluções globais por composições da integral primeira com uma função holomorfa / Let L be a nonsingular complex vector field defined on an open subset of the plane. Treves proved that if L is locally solvable then L is locally integrable. For hypoelliptic planar vector fields an additional property holds, namely, every first integral (restricted to a sufficiently small open set) is an injective (and open) mapping; this, on its turn, implies that each solution of the homogeneous equation Lu = 0 is locally of the form u = h Z, where h is holomorphic and Z is a first integral of the vector eld. The central problem of interest in this work is the corresponding global question, that is, the existence of global, injective first integrals and the representation of global solutions as compositions of the first integral with a holomorphic function
10

O problema de Riemann-Hilbert para campos vetoriais complexos / The Riemann-Hilbert problem for complex vector fields

Camilo Campana 24 April 2017 (has links)
Este trabalho trata de problemas de contorno definidos no plano. O problema central desta tese é chamado Problema de Riemann-Hilbert, o qual pode ser descrito como segue. Seja L um campo vetorial complexo não singular definido em uma vizinhança do fecho de um aberto simplesmente conexo do plano com fronteira suave. O Problema de Riemann-Hilbert para o campo L consiste em obter uma solução para a equação Lu = F(x, y, u) no aberto em estudo, sendo dada uma função F mensurável. Pede-se também que a solução tenha extensão contínua até a fronteira e que satisfaça lá uma condição adicional; trabalha-se aqui no contexto das funções Hölder contínuas. Foram obtidos resultados para o problema acima no caso em que L pertence a uma classe de campos hipocomplexos. O caso clássico conhecido é quando o campo vetorial é o operador de Cauchy-Riemann, ou, mais geralmente, quando é um campo elítico. / This work deals with boundary problems in the plane. The central problem in this thesis is the so-called Riemann-Hilbert problem, which may be described as follows. Let L be a non-singular complex vector field defined on a neighborhood of the closure of a simply connected open subset of the plane having smooth boundary. The Riemann-Hilbert problem for the vector field L consists in finding a solution to the equation Lu = F(x, y, u) on the open set under study, where the given function F is measurable. It is also required that the solution have a continuous extension up to the boundary and satisfy an additional condition there. Results were obtained for the above problem when L belongs to a class of hypocomplex vector fields. The well-known classical case is the one in which the vector field under study is the Cauchy-Riemann operator, or more generally when it is an elliptic vector field.

Page generated in 0.0861 seconds