• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • 86
  • 26
  • 8
  • 7
  • 7
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 278
  • 46
  • 36
  • 33
  • 32
  • 28
  • 27
  • 27
  • 27
  • 24
  • 23
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Investigation of uranium redox chemistry and complexation across the pH range by cyclic voltammetry

Chew, Mei January 2013 (has links)
The current option for the management of Intermediate-Level Waste (ILW) and High-Level Waste (HLW) in the UK is to store it in stainless steel containers and then placed in a deep underground Geological Disposal Facility (GDF). This may subsequently be backfilled with a cementitious material generating very high pH conditions. The eventual corrosion of the stainless steel canisters containing the waste used for disposal will lead to reducing conditions thereby promoting a low Eh environment. Electrochemical experiments are needed to determine which uranium species is/are present at a particular pH and to model the redox behaviour of aqueous uranium in a potential GDF. The main aim of this project is to use cyclic voltammetry to deduce peak potentials for the various uranium redox couples in aqueous solution across the pH range and in particular the hyperalkaline range, as the surroundings of a GDF will be in high pH conditions. Data in the literature have been obtained only under acidic conditions where they were subsequently extrapolated to obtain data for alkaline conditions in some reports. Is this valid however? Experiments are therefore needed to obtain fundamental data under alkaline conditions to fill in gaps in the literature. In addition to radionuclides, complexing organic ligands present in a cementitious repository could have an important effect on the immobilisation of radionuclides in concrete. This is due to the ability of the ligands to form complexes with cations, thereby enhancing their solubility and mobility in the cement pore water. Four different ligands were investigated in this project that are relevant to nuclear waste disposal which comprised of carbonate, ethylenediaminetetraacetic acid (EDTA), gluconic acid and α-isosaccharinic acid (α-ISA). The peak potentials of each uranium redox reaction in aqueous solution were measured and the potentials were compared in ligand and non-ligand systems. The voltammograms were compared to obtain their similarities and differences in terms of the shape of the cyclic voltammograms, peak potentials, reversibility, current responses and etc. Analysis of the similarities and differences was needed to be able to increase the understanding of the complexation effects of these ligands with uranium under different pH conditions in aqueous solution.
42

Avaliação da interação entre galectina-1 e zinco e suas potenciais implicações estruturais e funcionais / Evaluation of the interaction between Galectin-1 and Zinc and their potential structural and functional implications

Silveira, Willian Abraham da 01 July 2011 (has links)
Introdução: A Galectina-1 (Gal-1) é uma proteína multifuncional capaz de reconhecer, de modo específico, glicanas compostas por resíduos de -galactosídeos, por meio de domínios de reconhecimento de carboidrato (CRD). A Gal-1 é um homodímero de 14.900 daltons, pI = 5.6, apresenta uma topologia molecular do tipo jelly-roll composto por duas folhas- anti-paralelas. Além disso, esta proteína não apresenta peptídeo sinal e possui 6 cisteínas, 7 ácidos glutâmicos, 9 ácidos aspárticos e 4 histinas por monômero. A Gal-1 liga-se a diferentes moléculas biológicas contidas nas superfícies celulares, núcleo e componentes da matriz extracelular. O zinco é um importante metal em sistemas biológicos. Aproximadamente 10% do proteoma humano é potencialmente capaz de complexar zinco. Este íon exibe propriedades adequadas tanto para funções catalíticas, quanto estruturais em proteínas. Os sítios de ligação a zinco, nas proteínas, podem ser divididos em catalíticos, estruturais, co-catalíticos e sítios na interface protéica. Geralmente, os resíduos de cisteína, histidina, ácido glutâmico e ácido aspártico são alvos preferênciais de interação com Zn. Há na literatura dados que mostram a interação da Gal-1 humana com íons orgânicos, porém não há relatos sobre a interação Gal-1/Zn . Objetivos: O presente trabalho teve como objetivo avaliar a existência e as implicações da interação entre o íon Zn2+ e a proteína Gal-1. Materiais e Métodos: Foi efetuada a produção, purificação e padronização do uso das formas dimérica e monomérica da Gal-1 recombinante humana. A interação Gal-1/Zn foi avaliada através de ensaios biofísicos e biológicos. A análise in vitro e in silico dos paramêtros biofísicos, foi feita através de espectrofluorimetria, de dicroísmo circular, de ensaio de precipitação, do método GRID e por dinâmica molecular. A análise in vitro dos parâmetros biológicos, foi realizada por meio de ensaio de hemaglutinação e interação com laminina por ELISA. Resultados e Discussão: A adição de ZnCl2 numa solução de Gal-1 causa aumento da emissão por fluorescência do triptofano e uma alteração para o vermelho, altera o espectro de dicroísmo circular e causa precipitação protéica da Gal-1. Estes eventos ocorreram de forma seletiva e dependente da concentração desse íon. As análises in silico indicam que o provável sítio de complexação Zn/Gal-1 é distinto do CRD e é formado pelos aminoácidos Glu-15, Asp-92 e Asp-134, assumindo a conformação trigonal bipiramidal e tendo número de coordenação igual a 5. Conclusão: As análises biofísicas in vitro e in silico, nos indicam que a Galectina-1 tem a capacidade de se complexar com o íon Zn2+. / Introduction: Galectin-1 (Gal-1) is a multifunctional protein that specifically recognizes glycans with -galactosides through carbohydrate recognition domains (CRD). Gal-1 is a homodimeric protein of 14.900daltons, pI=5.6, shows a jelly-roll molecular topology composed of two anti-parallels - sheet, has no signal peptide and contains 6 cysteines, 7 glutamic acids, 9 aspartic acids and 4 histidines per monomer. This lectin binds to different biological molecules contained in the cell surface, nucleus and extracellular matrix components. Zinc is an important metal in biological systems because can participate in the maintenance of protein structure and biological activity. Usually, cysteine , histidine, glutamic acid and aspartic acid residues are preferential targets for interaction with Zn. Approximately 10% of the human proteome is potentially capable to forming complexes with Zn. The Zn2+ ion exhibits properties suitable for both catalytic and structural protein functions. Proteins zinc binding sites can be divided into catalytic, structural, co-catalytic and protein interface sites.There are reports in the literature that shows the interaction between galectin-1 and organic ions. However, were not found reports about Zn-Gal-1 complexes. Objective: The aim of this study was to evaluate the existence and implications of the interaction between galectin-1 and Zn2+ ion. Materials and Methods: Human recombinant Gal-1 (monomer and dimmer) was obtained and purified. Also, the conditions for the use of Gal-1 were standardized. The interaction Zn/Gal-1 was assessed by biophysical an biological procedures. The analysis in vitro and in silico was made by spectrofluorimetry, circular dichroism, precipitation test, method of GRID, and molecular dynamics. The in vitro analysis of biological parameters were performed by hemmaglutination and laminin binding (ELISA) tests. Results and Discussion: The addition of ZnCl2 in Gal-1 solution causes increased fluorescence emission of tryptophan-70 and a red shift, alters the circular dichroism spectrum and causes precipitation of Gal-1 protein. These events occurred in a selective manner dependent of Zinc concentration. The in silico analysis indicates that the probable site of Zn/Gal-1 complexation is distinct from the CRD and is formed by the amino acids Glu-15, Asp-92 and Asp-134, assuming trigonal bipyramidal conformation and with coordination number equal to 5 . Conclusion: The biophysical in vitro and in silico findings suggests that Galectin-1 has the ability to complex with the Zn2+ ion.
43

Synthesis, stability and detection of triacetone triperoxide via metal complexation

Hill, Alexander R. January 2015 (has links)
Triacetone triperoxide has been synthesised for a range of experimental studies towards the reactivity, stability and gas phase metal complexation of the explosive. Reaction with transition metals was performed and a series of molten TATP experiments conducted at 120 °C. The effect of a molten state on the degradation, conformation and reactivity of TATP has been studied with the formation of diacetone diperoxide, acetone and acetic acid degradation products observed. The complexation of TATP with a range of metals has been studied by electrospray ionisation-mass spectrometry, yielding [M+Cat]+ ions for all of the alkali metals. The first observations of a [TATP+Ag]+ adduct have been made. The formation of [2TATP+Li+LiX]+ (X = Br, Cl) and [2TATP+Ag]+ sandwich complexes was also observed. Collision cross sections (CCS) for the lithium-containing complexes of TATP were measured by travelling wave ion mobility-mass spectrometry, comparing well to computationally determined structures.
44

Sequestration of metal and metalloid ions by thermophilic bacteria

Hetzer, Adrian January 2007 (has links)
This Ph. D. thesis presents results and conclusions from studies 1) investigating the interaction between metal and metalloid ions and thermophilic bacteria, and 2) characterizing microbial populations in a geothermally active habitat with relatively high concentrations of metalloid ions and compounds. In initial cadmium ion toxicity assays, the minimal inhibition concentration for 46 thermophilic bacteria of the genera Aneurinibacillus, Anoxybacillus, Bacillus, Brevibacillus, Geobacillus, and Thermus were determined. The highest tolerances to cadmium ions (Cd2+) in the range of 400 to 3200 micro;M were observed for species belonging to the genus Geobacillus. The thermophilic Gram-positive bacteria Geobacillus stearothermophilus and G. thermocatenulatus were selected to describe further biosorption reactions between cadmium ions and chemically reactive functional groups (potential ligands) within and onto the bacterial cell walls. Data obtained from electrophoretic mobility, potentiometric titration and cadmium ion adsorption experiments were used to quantify the number and concentrations of ligands and to determine the thermodynamic stability constants for the ligand-cation complexes. The first reported surface complexation models (SCMs) quantifying metal ion adsorption by thermophilic microorganisms predicted cadmium adsorption and desorption by both studied Geobacillus strains over a range of pH values and for different biomasses. The results indicated the functional group, with a deprotonation constant pK value of approximately 3.8, to be more dominant in cation biosorption accounting for 66 and 80% of all titrable groups for G. thermocatenulatus and G. stearothermophilus, respectively. The generated SCMs are different from model parameters obtained from mesophilic species that have been studied to date and might indicate a different biosorption behavior for both studied Geobacillus strains. Another objective of this thesis was to characterize microbial populations in the hot spring Champagne Pool, located in Waiotapu, New Zealand. The thermal spring is approximately 65 m in diameter and discharges water at 75eg; C and pH 5.5, which is oversaturated with arsenic and antimony compounds that precipitate and form orange deposits. Recovered nucleic acids and adenosine 5'-triphosphate (ATP) concentrations obtained for Champagne Pool water samples indicated low microbial density and were in good agreement with relatively low cell numbers of 5.6 plusmn; 0.5 x10^6 cells per ml. Denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library analyses revealed the abundance of Sulfurihydrogenibium, Sulfolobus and Thermofilum-like populations in Champagne Pool. Two novel bacteria and one novel archaeon were successfully isolated with a distant phylogenetic relationship to Sulfurihydrogenibium, Thermoanaerobacter, and Thermococcus, respectively. Genotypic and metabolic characteristics differentiated isolate CP.B2 from described species of the genus Sulfurihydrogenibium. CP.B2 represents a novel genus within the Aquificales order, for which the name Venenivibrio stagnispumantis gen. nov., sp. nov. is proposed. V. stagnispumantis is a thermophilic, chemolithothrophic bacterium, that utilizes molecular hydrogen as electron donor and oxygen as electron acceptor and displayed growth in the presence of up to 8 mM NaAsO2 (As3+) and more than 20 mM Na2HAsO4.7H2O (As5+). However, growth was not observed when Na2HAsO4.7H2O and NaAsO2 were provided as the sole electron acceptor and donor pair. Arsenic resistance was conferred by the genes arsA and arsB
45

The geochemical behaviour of uranium in the Boom Clay

Delécaut, Grégory 28 June 2004 (has links)
In Belgium, the Boom Clay is currently studied as the reference host formation for the disposal of high-level and long-lived radioactive waste. In case of direct disposal of spent fuel, uranium isotopes are important contributors along with their daughters to the dose rate at very long term. Therefore, it is essential to study the migration of uranium in the host formation. The present work contributes to improve the knowledge of uranium speciation in the Boom Clay, U(IV) versus U(VI), and of the mechanisms controlling the uranium mobility such as solubility, sorption and complexation by organic matter. The information necessary to interpret the migration behaviour is derived from the study of naturally occurring uranium in the rock and from laboratory experiments conducted under conditions representative for the Boom Clay. Uranium naturally present in the Boom Clay is concentrated in detrital heavy minerals and in authigenic iron(II)-bearing minerals such as siderite and glauconite. Despite its reducing capacity, pyrite is surprisingly depleted in uranium relative to the mean content. Furthermore, uranium is also associated with the surfaces of clay minerals. The clayey fraction contains about 4 ppm uranium and is the main contributor to the total uranium content of the Boom Clay since it constitutes up to 60 wt. % of the rock. The correlation observed on the field between uranium and organic matter suggests that uranium is reduced, likely during the early diagenesis process of bacterially-mediated sulphate reduction. If hexavalent oxidation state of uranium predominates as predicted by geochemical calculations based on the most recent thermodynamic data of the Nuclear Energy Agency (NEA), less than 5% of uranium is complexed by humic acids in the Boom Clay pore water. The U(VI) speciation is dominated by the inorganic carbonate complexes, merely UO2(CO3)34-. The conditional constant determined for the complexation of U(VI) by humic acids under in situ Boom Clay conditions is log exp = 12.4. However, experimental studies show that UO2(CO3)34- is reduced by interaction with pyrite, the main reducing mineral present in the rock, and precipitates as a mixed oxide of U(IV)/U(VI), i.e. UO2+x. Moreover, electromigration experiments suggest that U(VI) is not stable in the Boom Clay: U(VI) is reduced and precipitates as U(IV) oxy-hydroxides. The experimentally measured solubility of U(IV) amorphous oxide, UO2(am), in Boom Clay pore water is about 10 8 mol•l 1. This solubility value is not increased by complexation of U(IV) with dissolved organic matter. The dominant effect of organic matter on the dissolution of UO2(am) is the stabilisation of U(IV) real colloids which increase the uranium concentration by three orders of magnitude. However, the mobility of these colloids is expected to be very limited because of the compaction level of the Boom Clay and its ultra-filtrating feature. The diffusive transport of dissolved uranium is furthermore retarded by significant sorption onto clay minerals. In conclusion, the presence of organic matter in the Boom Clay has no negative effect on the uranium retention which is dominated by the solubility and sorption of U(IV) species
46

Chlorite: Geochemical properties, Dissolution kinetcis and Ni(II) sorption

Zazzi, Åsa January 2009 (has links)
In Sweden, among other countries, a deep multi-barrier geological repository, KBS-3, is planned for the burial of nuclear waste. One of the barriers is identified as the grantic bedrock itself and in this environment chlorite is present at surfaces in fracture zones. This thesis is focused on characterisation of chlorite samples and studies of their dissolution and sorption behaviour, in order to verify chlorites capacity to retard possible radionuclide migration in the case of leaking canisters. Chlorite dissolution of has been studied in the pH interval 2-12, and as expected the dissolution is highest at acidic pH and at most alkaline pH, whereas dissolution is lowest at near neutral pH values. Chemical and physical properties of chlorites clearly influence the dissolution rates, and at steady-state dissolution rates in the interval 10-12 ‑ 10-13 mol g-1 s-1 was observed. Sorption studies were performed since Ni(II) is one of the important activation products in spent nuclear fuel and sorption data on minerals like chlorite are lacking. Ni(II) sorption onto chlorite was studied using batch technique as a function of; pH, concentration of Ni(II), ionic strength and solid concentrations. As expected, the sorption of Ni(II) onto chlorite was pH dependent, but not ionic strength dependent, with a sorption maximum at pH ~ 8, and with a Kd of ~ 103 cm3/g. This confirms that the Ni(II) sorption onto chlorite is primarily acting through surface complexation. The acid-base properties were determined by titrations and described by a non-electrostatical surface complexation model in FITEQL. Further, the sorption results were fit with a 2-pK NEM model and three surface complexes, Chl_OHNi2+, Chl_OHNi(OH)+ and Chl_OHNi(OH)2, gave the best fit using FITEQL. / Sverige är ett av de länder som planerar ett geologiskt slutförvar kallad KBS-3, bestående av ett antal barriärer, för placering utav det använda kärnbränslet. En av dessa barriärer är identifierad som själva berggrunden där det tilltänkta förvaret kommer att byggas och i denna miljö förekommer klorit på granitytor i sprickzoner. Denna doktorsavhandling karakteriserar kloriter och studerar deras upplösnings- och sorptionsbeetende, för att kunna bestämma huruvida kloriter är utav betydelse som naturlig barriär för eventuell radionuklidtransport från det använda kärnbränslet. Upplösning av klorit har undersökts i pH intervallet 2-12 och graden av upplösningen är som förväntat högst vid sura respektive mest basiska pH och lägst där pH är neutralt. Denna studie bekräftar att den kemiska sammansättning och de fysikaliska egenskaper hos kloriterna påverkar upplösningshastigheterna och vid steady‑state har upplösningshastighet bestämts till 10-12 ‑ 10-13 mol g-1 s-1. Sorptionsstudier genomfördes då Ni(II) är en viktig aktiveringsprodukt och data rörande Ni(II) sorption till klorit saknas. Ni(II) sorption till klorit har studerats i; varierande pH, olika initiala Ni(II) koncentrationen, olika jonstyrka och olika fastfas förhållanden där individuella satser i serie har nyttjats. Som förväntat är sorptionen av Ni(II) till klorit pH beroende men inte jonstyrkeberoende och ett sorpions maximum observerades vid pH ~ 8, med ett Kd‑värde på ~ 103 cm3/g. Från detta dras slutsatsen att sorptionen av Ni(II) till klorit sker mestadels genom ytkomplexering. Syra-bas egenskaperna hos kloriterna bestämdes genom titreringar och bekrevs med en icke‑elektrostatisk modell i FITEQL. Vidare har passning av sorptionsresultaten utförts med en 2-pK NEM-modell och tre ytkomplex, Chl_OHNi2+, Chl_OHNi(OH)+ och Chl_OHNi(OH)2, vilket gav den bästa passningen av data med FITEQL. / QC 20100819
47

Computational study of the complexation of metal ion precursors in dendritic polymers

Tarazona Vasquez, Francisco 15 May 2009 (has links)
Metal ions are important for medical, environmental and catalytic applications. They are used as precursor molecules for the manufacture of metal nanocatalysts, which are promising materials for an array of biomedical, industrial, and technological applications. Understanding the effect of the environment upon a metal ion-dendrimer system constitutes a step closer to the understanding of the liquid phase templated synthesis of metal nanoparticles. In this dissertation we have used computational techniques such as abinitio calculations and molecular dynamics (MD) simulations to investigate the complexation of Cu(II) and Pt(II) metal ions to a polyamidoamine (PAMAM) dendritic polymer from structural, thermodynamic, and kinetic viewpoints. First, we analyze the local configuration of a low generation polyamidoamine dendrimer to understand the role of intramolecular interactions. Then, we examine the local configuration of dendrimer outer pockets in order to determine their capacity to encapsulate water within. Next, the complexation of Cu(II) with a small –OH terminated dendrimer in presence of solvent and counterions is investigated. This relatively simple system gives insight on how cationic species bind within a dendrimer. The complexation of potassium tetrachloroplatinate, commonly used precursor salt in dendrimer templated synthesis of platinum and bimetallic platinum-containing nanoparticles, with PAMAM dendrimer has been the subject of several experimental reports. So we investigate the complexation of potassium tetrachloroplatinate within a dendrimer outer pocket in order to understand the effect of dendrimer branches, Pt(II) speciation, pH, solvent and counterions upon it. Our study shows that dendrimer branches can improve the thermodynamics but can also preclude the kinetics by raising the energy barriers. Our study provides an explanation of why, where Pt(II) and how Pt(II) binds. We believe that these molecular level details, unaccessible to experimental techniques, can be a helpful contribution toward furthering our understanding of the complexation of Pt(II) and the starting point to study the next step of dendrimer templated synthesis, the reduction of Pt(II) into platinum nanoparticles inside pockets.
48

Development of a Mineral-Specific Sorption Database for Surface Complexation Modeling (Final Report and Manual)

Richter, Anke, Vahle, A., Nebelung, Cordula, Brendler, Vinzenz 31 March 2010 (has links) (PDF)
RES³T - the Rossendorf Expert System for Surface and Sorption Thermodynamics - is a digitized thermodynamic sorption database, implemented as a relational database. It is mineral-specific and can therefore also be used for additive models of more complex solid phases such as rocks or soils. An integrated user interface helps users to access selected mineral and sorption data, to extract internally consistent data sets for sorption modeling, and to export them into formats suitable for other modeling software. Data records comprise of mineral properties, specific surface area values, characteristics of surface binding sites and their protolysis, sorption ligand information, and surface complexation reactions. An extensive bibliography is also included, providing links not only to the above listed data items, but also to background information concerning surface complexation model theories, surface species evidence, and sorption experiment techniques. The RES³T database is intended for an international use. This requires high standards in availability, consistency and actuality. Therefore the authors of the database decided to couple the database onto an authorization tool.
49

Synthèse, caractérisation et réactivité en milieu aqueux de matériaux à base de silice fonctionnalisée par des ligands dithiocarbamate et cyclame

Goubert-Renaudin, Stéphanie Walcarius, Alain. January 2007 (has links) (PDF)
Thèse de doctorat : Chimie et Electrochimie Analytiques : Nancy 1 : 2007. / Titre provenant de l'écran-titre. Bibliogr.
50

Apports des techniques analytiques couplées à la connaissance de la spéciation de l'uranium en conditions naturelles

Petit, Jéremy Stambouli, Moncef. January 2009 (has links)
Thèse de doctorat : chimie analytique : Ecole centrale de Paris : 2009. / Titre provenant de l'écran-titre. Bibliogr. 176 réf.

Page generated in 0.0885 seconds