1 |
Handbook of Tissue Engineering Scaffolds: Volume oneMozafari, M., Sefat, Farshid, Atala, A. 25 February 2021 (has links)
No / This title provides a comprehensive and authoritative review on recent advancements in the application and use of composite scaffolds in tissue engineering. Chapters focus on specific tissue/organ (mostly on the structure and anatomy), the materials used for treatment, natural composite scaffolds, synthetic composite scaffolds, fabrication techniques, innovative materials and approaches for scaffolds preparation, host response to the scaffolds, challenges and future perspectives, and more. Bringing all the information together in one major reference, the authors systematically review and summarise recent research findings, thus providing an in-depth understanding of scaffold use in different body systems.
|
2 |
Handbook of Tissue Engineering Scaffolds: Volume two / Handbook of tissue engineering scaffolds: Volume TwoMozafari, M., Sefat, Farshid, Atala, A. 05 March 2021 (has links)
No / This title provides a comprehensive and authoritative review on recent advancements in the application and use of composite scaffolds in tissue engineering. Chapters focus on specific tissue/organ (mostly on the structure and anatomy), the materials used for treatment, natural composite scaffolds, synthetic composite scaffolds, fabrication techniques, innovative materials and approaches for scaffolds preparation, host response to the scaffolds, challenges and future perspectives, and more. Bringing all the information together in one major reference, the authors systematically review and summarise recent research findings, thus providing an in-depth understanding of scaffold use in different body systems.
|
3 |
Scaffold surface modifications and culture conditions as key parameters to develop cartilage and bone tissue engineering implantsRódenas Rochina, Joaquín 31 March 2015 (has links)
This thesis is focused on the development and evaluation of different
hybrid scaffolds for the treatment of injuries in cartilage or bone.
These hybrid materials were three-dimensional polycaprolactone
macroporous scaffolds obtained through freeze extraction and particle
leaching combined method and modified with hyaluronic acid or
mineral particles. In order to facilitate the description of the obtained
results, the thesis is divided in two sections dedicated to bone and
cartilage tissue engineering respectively.
In the case of bone tissue engineering we addressed the treatment of
disorders associated with the spine that require spinal immobilization.
This Thesis proposes the development of a synthetic macroporous
support for intervertebral fusion as an alternative to commercial bone
substitutes. Macroporous scaffolds were developed with bare
polycaprolactone or its blends with polylactic acid in order to increase
its mechanical properties and degradation rate. Furthermore, the
scaffolds obtained were reinforced with hydroxyapatite or
Bioglass®45S5 to improve their mechanical properties and turn them
in bioactive scaffolds. The supports were characterized
physicochemically and biologically to determine if they met the
requirements of the project. Finally, materials were tested in vivo in a
bone critical size defect preformed in a rabbit model against a
commercial support.
Cartilage engineering has been extensively studied in the last years
due to the inherent limited self repair ability of this tissue. The second
part of the thesis was focused in developing a construct composed by in vitro differentiated chondrocyte like cells in a hybrid scaffold for
cartilage tissue engineering. Polycaprolactone hybrid substrates coated
with hyaluronic acid scaffold were developed obtaining a substrate
with positive influence over the development of chondrocyte
phenotype in culture and able to protect the cells from excessive
mechanical loading in the joint. Cell-scaffolds constructs were
obtained combining hybrid scaffolds with mesenchymal stem cells
and differentiating them to chondrocytes using chondrogenic culture
medium combined with hypoxia, mechanical stimulus or co-culture.
Finally the cellularized scaffolds were mechanically, biochemically
and histologically characterized to determine the production of
extracellular matrix and expression of chondrogenic markers. / Ródenas Rochina, J. (2015). Scaffold surface modifications and culture conditions as key parameters to develop cartilage and bone tissue engineering implants [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48526
|
4 |
Fabrication of 3D hybrid scaffold by combination technique of electrospinning-like and freeze-drying to create mechanotransduction signals and mimic extracellular matrix function of skinAghmiuni, A.I., Heidari Keshel, S., Sefat, Farshid, AkbarzadehKhiyavi, A. 21 February 2021 (has links)
Yes / Fabrication of extracellular matrix (ECM)-like scaffolds (in terms of structural-functional) is the main challenge in skin tissue engineering. Herein, inspired by macromolecular components of ECM, a novel hybrid scaffold suggested which includes silk/hyaluronan (SF/HA) bio-complex modified by PCP: [polyethylene glycol/chitosan/poly(ɛ-caprolactone)] copolymer containing collagen to differentiate human-adipose-derived stem cells into keratinocytes. In followed by, different weight ratios (wt%) of SF/HA (S1:100/0, S2:80/20, S3:50/50) were applied to study the role of SF/HA in the improvement of physicochemical and biological functions of scaffolds. Notably, the combination of electrospinning-like and freeze-drying methods was also utilized as a new method to create a coherent 3D-network. The results indicated this novel technique was led to ~8% improvement of the scaffold's ductility and ~17% decrease in mean pore diameter, compared to the freeze-drying method. Moreover, the increase of HA (>20wt%) increased porosity to 99%, however, higher tensile strength, modulus, and water absorption% were related to S2 (38.1, 0.32 MPa, 75.3%). More expression of keratinocytes along with growth pattern similar to skin was also observed on S2. This study showed control of HA content creates a microporous-environment with proper modulus and swelling%, although, the role of collagen/PCP as base biocomposite and fabrication technique was undeniable on the inductive signaling of cells. Such a scaffold can mimic skin properties and act as the growth factor through inducing keratinocytes differentiation.
|
Page generated in 0.069 seconds