1 |
Modélisation mathématique et numérique des fluides à l’échelle nanométrique / Mathematical and numerical modelling of fluids at nanometric scalesJoubaud, Rémi 20 November 2012 (has links)
Ce travail présente quelques contributions mathématiques et numériques à la modélisation des fluides à l'échelle nanométrique. On considère deux niveaux de modélisation. Au premier niveau,une description atomique est adoptée. On s'intéresse aux méthodes permettant de calculer la viscosité de cisaillement d'un fluide à partir de cette description microscopique. On étudie en particulier les propriétés mathématiques de la dynamique de Langevin hors d'équilibre permet-tant de calculer la viscosité. Le deuxième niveau de description se situe à l'échelle du continu et l'on considère une classe de modèles pour les électrolytes à l'équilibre incorporant d'une part la présence d'un confinement avec des parois chargées et d'autre part des effets de non-idéalité dus aux corrélations électrostatiques entre les ions et au phénomène d'exclusion stérique. Dans un premier temps, on étudie mathématiquement le problème de minimisation de l'énergie libre dans le cas où celle ci reste convexe (non-idéalité modérée). Puis, on considère le cas non convexe (forte non-idéalité) conduisant à une séparation de phase / This work presents some contributions to the mathematical and numerical modelling of fluids at nanometric scales. We are interested in two levels of modelling. The first level consists in an atomic description. We consider the problem of computing the shear viscosity of a fluid from a microscopic description. More precisely, we study the mathematical properties of the nonequilibrium Langevin dynamics allowing to compute the shear viscosity. The second level of description is a continuous description, and we consider a class of continuous models for equilibrium electrolytes, which incorporate on the one hand a confinement by charged solid objects and on the other hand non-ideality effects stemming from electrostatic correlations and steric exclusion phenomena due to the excluded volume effects. First, we perform the mathematical analysis of the case where the free energy is a convex function (mild non-ideality). Second, we consider numerically the case where the free energy is a non convex function (strong non-ideality) leading in particular to phase separation
|
Page generated in 0.1781 seconds