Spelling suggestions: "subject:"comutativo"" "subject:"comutativa""
21 |
Noncommutative Lp-Spaces and Perturbations of KMS States / Espaços Lp Não-Comutativos e Perturbações de Estados KMSSilva, Ricardo Correa da 12 July 2018 (has links)
We extend the theory of perturbations of KMS states to some class of unbounded perturbations using noncommutative Lp-spaces. We also prove certain stability of the domain of the Modular Operator associated to a ||.||p-continuous state. This allows us to define an analytic multiple-time KMS condition and to obtain its analyticity together with some bounds to its norm. The main results are Theorem 5.1.15, Theorem 5.1.16 and Corollary 5.1.18. Apart from that, this work contains a detailed review, with minor contributions due to the author, starting with the description of C*-algebras and von Neumann algebras followed by weights and representations, a whole chapter is devoted to the study of KMS states and its physical interpretation as the states of thermal equilibrium, then the Tomita-Takesaki Modular Theory is presented, furthermore, we study analytical properties of the modular operator automorphism group, positive cones and bounded perturbations of states, and finally we start presenting multiple versions of noncommutative Lp-spaces. / Apresentamos uma extensão da teoria de perturbações de estados KMS para uma classe de operadores ilimitados através dos espaços Lp não-comutativos. Além disso, provamos certa estabilidade do domínio do Operador Modular de um estado ||.||p-contínuo o que nos permite escrever a condições KMS para tempos múltiplos e obter sua analiticidade junto com majorantes para sua norma. Os principais resultados são o Teorema 5.1.15, o Teorema 5.1.16 e o Corolário 5.1.18. Além disso, nesse trabalho fazemos uma detalhada revisão, com contribuições menores devidas ao autor, começamos com uma descrição de álgebras C* e álgebras de von Neumann, seguida por pesos e representações, um capítulo inteiro é dedicado ao estudo de estados KMS e sua interpretação como estados de equilíbrio térmico, depois apresentamos a Teoria Modular de Tomita-Takesaki, além disso, estudamos as propriedades de analiticidade do grupo de automorfismo modular, cones positivos e perturbações de estados e finalmente, começamos a apresentar múltiplas versões dos espaços Lp não comutativos.
|
22 |
Derivações de ordem superior em anéis primos e semiprimosHaetinger, Claus January 2000 (has links)
Nesta tese estudamos as derivações de ordem superior (DOS) em anéis não-comutativos. Inicialmente, mostramos que toda derivação tripla de Jordan de ordem superior em um anel semiprimo livre de 2-torção é uma DOS. Em particular, toda derivação de Jordan de ordem superior (DJOS) num anel deste tipo é uma DOS. Estendemos também o resultado a ideais de Lie U, provando que se R é um anel primo livre de 2-torção e D é uma DJOS de U em R onde U ct Z(R) é tal que U2E U para todo u E U, então D é uma DOS de U em R. Nestas condições, se U C Z(R), então o resultado não é válido. Estudamos ainda as DOS cujas componentes satisfazem relações de dependência linear sobre R ou Q (o anel de quocientes à direita de M artindale de R). Caracterizamos tais DOS, e mostramos que as relações de dependência linear são preservadas ao estendermos uma DOS de R a Q. / In this thesis we study the higher order derivations (sho rtly, DOS) in noncommutative rings. Initially, we show that every higher order Jordan triple derivation on a 2-torsion free semiprime ring is a DOS. In particular, every higher order Jordan derivation (DJOS) in a ring of this type is a DOS. We also extend the result to Lie ideais U, proving that if R is a 2-torsion free prime ring and D is a DJOS of U into R where U ct Z(R) (the center of R) is such that U2E U for all u E U, then D is a DOS of U into R. With these conditions, if U C Z(R), then the result is no more true. We also study the DOS whose components satisfy relationships of linear dependence on R or Q (the Martindale ring of right quocients of R). We characterize such DOS and we show that the relationships of linear dependence are preserved if we extend a DOS of R to Q.
|
23 |
Derivações de ordem superior em anéis primos e semiprimosHaetinger, Claus January 2000 (has links)
Nesta tese estudamos as derivações de ordem superior (DOS) em anéis não-comutativos. Inicialmente, mostramos que toda derivação tripla de Jordan de ordem superior em um anel semiprimo livre de 2-torção é uma DOS. Em particular, toda derivação de Jordan de ordem superior (DJOS) num anel deste tipo é uma DOS. Estendemos também o resultado a ideais de Lie U, provando que se R é um anel primo livre de 2-torção e D é uma DJOS de U em R onde U ct Z(R) é tal que U2E U para todo u E U, então D é uma DOS de U em R. Nestas condições, se U C Z(R), então o resultado não é válido. Estudamos ainda as DOS cujas componentes satisfazem relações de dependência linear sobre R ou Q (o anel de quocientes à direita de M artindale de R). Caracterizamos tais DOS, e mostramos que as relações de dependência linear são preservadas ao estendermos uma DOS de R a Q. / In this thesis we study the higher order derivations (sho rtly, DOS) in noncommutative rings. Initially, we show that every higher order Jordan triple derivation on a 2-torsion free semiprime ring is a DOS. In particular, every higher order Jordan derivation (DJOS) in a ring of this type is a DOS. We also extend the result to Lie ideais U, proving that if R is a 2-torsion free prime ring and D is a DJOS of U into R where U ct Z(R) (the center of R) is such that U2E U for all u E U, then D is a DOS of U into R. With these conditions, if U C Z(R), then the result is no more true. We also study the DOS whose components satisfy relationships of linear dependence on R or Q (the Martindale ring of right quocients of R). We characterize such DOS and we show that the relationships of linear dependence are preserved if we extend a DOS of R to Q.
|
24 |
Fluidos em Espaços Não-Comutativos.HOLENDER, L. 27 December 2011 (has links)
Made available in DSpace on 2018-08-01T22:29:56Z (GMT). No. of bitstreams: 1
tese_5339_.pdf: 396004 bytes, checksum: 5ae4b41d6d4ecfdc362c3983678b9666 (MD5)
Previous issue date: 2011-12-27 / Neste trabalho apresentaremos os resultados da nossa pesquisa sobre a generalização dos fluidos relativísticos na parametrização de Kähler para espaços não-comutativos aplicando métodos de teoria de campo. A nossa proposta se aplica a uma grande classe de fluidos parame-trizados por duas funções arbitrárias suaves: a primeira que generaliza o potencial de Kähler de-nido na superfície dos potenciais complexos do
fluido e a segunda que parametriza a equação de estado. Determinamos, também, os vínculos que os graus de liberdade dos
fluidos devem satisfazer para que a teoria tenha as simetrias funda-mentais da geometria não-comutativa e calcularemos as grandezas físicas do fluido não-comutativo.
|
25 |
Estrutura e exemplos de A-Loops comutativos finitos / A-Loops structure and examples finite commutativeBarros, Dylene Agda Souza de 03 March 2010 (has links)
Esse trabalho trata um pouco da teoria de A-loops comutativos finitos. No primeiro captulo estudamos propriedades básicas de loops em geral e exi- bimos exemplos de loops não associativos. No captulo 2 falamos de A-loops em geral e mesmo sem assumirmos comutatividade obtivemos resultados importantes, um exemplo é que A-loop associa potências. Também determinamos quando um isótopo e K -holomorfo de um A-loop é um A-loop. No captulo 3, nossos únicos objetos de estudo foram os A-loops comutativos finitos. Vimos que tais estruturas têm proriedades muito interessantes, por exemplo, para um A-loop comutativo finito valem os teoremas de Lagrange, Cauchy. Também, um A-loop comutativo finito, Q, tem ordem potência de um primo p se e somente se todo elemento de Q tem ordem potência de p. Mais ainda, todo A-loop comutativo finito de ordem mpar é solúvel. No último captulo, apresentamos algumas maneira de se construir um A-loop. / In the first chapter we studied basic properties of general loops and we showed some examples of nonassociative loops. In chapter 2, we talked about general A-loops (without commutativity) and even that we obtained important results, for instance, that any A-loop is power-associative. We also determined when an isotope and a K -holomorph of an A-loop is an A-loop. In chapter 3 we dealt only with finite commutative A-loops. We saw that such structures have very interesting properties, for example, for a finite commutative A- loop, Lagrange, Cauchys theorems apply. Also a finite commutative A-loop, Q, has order a power of a prime p if and only if every element of Q has order a power of p. Moreover, finite commutative A-loops of odd order are solvable. In the last chapter we introduce some ways to construct a commutative A-loop
|
26 |
Alguns problemas de quantização em teorias com fundos não-abelianos e em espaços-tempo não-comutativos / Some quartization problems in theories with non-Abelian backgrounds and in non-commutative spacetimesFresneda, Rodrigo 06 October 2008 (has links)
Esta tese tem por base três artigos publicados pelo autor e colaboradores. O primeiro artigo trata do problema da quantização de modelos pseudoclássicos de partículas escalares em campos de fundo não-abelianos, cujo foco é a dedução desses modelos pseudo-clássicos usando métodos de integral de trajetória. O segundo artigo investiga a possibilidade de realizar modelos de gravitação dilatônica em variedades não-comutativas em duas dimensões. Para tanto, vale-se de um método de análise de vínculos e simetrias especialmente desenvolvido para gravitação não-comutativa em duas dimensões. O terceiro artigo discute modelos renormalizáveis em espaços-tempo não-comutativos com parâmetro de não-comutatividade bifermiônico em quatro dimensões. / This thesis is based on three published papers by the author and co-authors. The rst article treats the quantization problem of pseudoclassical models of scalar particles in non-Abelian backgrounds, which aims at deriving these models using path-integral methods. The second article examines the possibility of realizing dilaton gravity models in noncommutative two-dimensional manifolds. It relies upon a method of analysis of constraints and symmetries especially developed for non-commutative dilaton gravities in two dimensions. The third article discusses renormalizable models in noncommutative spacetime with bifermionic noncommutative parameter in four dimensions.
|
27 |
Alguns problemas de quantização em teorias com fundos não-abelianos e em espaços-tempo não-comutativos / Some quartization problems in theories with non-Abelian backgrounds and in non-commutative spacetimesRodrigo Fresneda 06 October 2008 (has links)
Esta tese tem por base três artigos publicados pelo autor e colaboradores. O primeiro artigo trata do problema da quantização de modelos pseudoclássicos de partículas escalares em campos de fundo não-abelianos, cujo foco é a dedução desses modelos pseudo-clássicos usando métodos de integral de trajetória. O segundo artigo investiga a possibilidade de realizar modelos de gravitação dilatônica em variedades não-comutativas em duas dimensões. Para tanto, vale-se de um método de análise de vínculos e simetrias especialmente desenvolvido para gravitação não-comutativa em duas dimensões. O terceiro artigo discute modelos renormalizáveis em espaços-tempo não-comutativos com parâmetro de não-comutatividade bifermiônico em quatro dimensões. / This thesis is based on three published papers by the author and co-authors. The rst article treats the quantization problem of pseudoclassical models of scalar particles in non-Abelian backgrounds, which aims at deriving these models using path-integral methods. The second article examines the possibility of realizing dilaton gravity models in noncommutative two-dimensional manifolds. It relies upon a method of analysis of constraints and symmetries especially developed for non-commutative dilaton gravities in two dimensions. The third article discusses renormalizable models in noncommutative spacetime with bifermionic noncommutative parameter in four dimensions.
|
28 |
Relações de dispersão deformadas na cosmologia inflacionária / Dispersion relations in inflationary cosmologyMachado, Ulisses Diego Almeida Santos 24 September 2012 (has links)
Relação de dispersão é outro nome para a função Hamiltoniana, cujo conhecimento especica completamente a dinâmica de um sistema no formalismo da mecânica classica. Sua escolha está intimamente vinculada às simetrias do sistema e, no contexto cosmologico aqui apresentado, com as simetrias locais obedecidas pelas leis fsicas. Mais ainda, a contribuição da materia na dinâmica cosmologica reflete a escolha do grupo local de simetrias das leis fsicas. Por outro lado, o problema fundamental da cosmologia pode ser definido como a construção de um modelo de evolução temporal de estados que, sob as hipoteses mais simples sobre estados iniciais (digamos, que demande a menor quantidade de informação possível para serem enunciadas), prediga o estado atual observado. O paradigma inacionario é atualmente a ideia que melhor cumpre esta denição, uma vez que prediz que uma grande variedade de condições iniciais leva a aspectos fundamentais do universo observado. Contudo, os mecanismos usuais de realização da inflação sofrem de problemas conceituais. O ponto de vista deste trabalho e que a realização convencional da inflação, isto é, atraves dos campos escalares minimamente acoplados, é a formulação localmente relativisticamente invariante da inflação. A maneira de incluir quebras e deformações da estrutura de simetrias locais na cosmologia é não única e está associado ao chamado problema trans Planckiano da inflação. Analogamente, a motivação conceitual para incluir esse tipo de modicação tampouco é unica. Dependendo do esquema de realização, a versão localmente não relativstica da mesma pode apresentar graves diculdades de conciliação com observações atuais, ou apresentar vantagens conceituais em relacão ao modelo padrão de inflacão, enquanto em conformidade com observações cosmológicas. Da maneira como foi posto o problema fundamental da cosmologia, a escolha das simetrias locais influi na regra de evolução dos estados. O conceito de simetrias encontra sua formulação independente de teorias físicas no formalismo da teoria de grupos, mas consideraremos uma extensão da ideia, de aplicabilidade mais geral, a teoria das algebras de Hopf que, de certo modo, trata das simetrias de estruturas algebricas. Esta extensão é útil inclusive no trato de simetrias dos espacos não comutativos, uma das principais propostas fsicas que em última analise afeta a estrutura de simetrias locais do espaco-tempo. A expressão simetrias locais, por si só, não diz muito sem a consideração de regras de realização. Essas regras dependem da estrutura matematica das observaveis da teoria. Sob hipoteses muito gerais, que não especicam uma teoria em particular, é possível mostrar, não como um teorema matematico formal, mas como uma hipotese tecnicamente bem motivada, que existem apenas dois tipos de teorias fsicas: as classicas e as quânticas. Trabalharemos sob essas hipoteses, as quais se formulam algebricamente assumindo a estrutura de C*-álgebra para as observaveis físicas, outra motivação para o uso das álgebras de Hopf para descrição das simetrias da natureza. / Dispersion relation is another name for the Hamiltonian function whose knowledge completely specifies the dynamics in the formalism of classical mechanics. Its choice is intimately related to the symmetries of the system, and, in the cosmological context here exposed, with the local space-time symmetries obeyed by physical laws. For the other side, the fundamental problem of cosmology can be defined as a construction of a time evolution model of states which, under simplest possible hypothesis concerning initial conditions (say, which demands the minimal amount of information to be specified), predicts the present observed state. The inflationary paradigm is currently the idea which better accomplishes this definition, since it predicts that a great variety of initial conditions lead to essential aspects of observed universe. The usual mechanisms of inflation suffer, however, with conceptual problems. The point of view of this work is that the usual realization of inflation based on weakly coupled scalar fields is the local relativistic invariant realization. The way of including breaks and deformations of the local space-time symmetries is not unique and it is associated to the so called Trans-Planckian problem of inflation. Analogously, the motivation to include this kind of modification is neither unique. Depending of the scheme of realization, the locally non-relativistic version may lead to serious difficulties in conciliation with observations, or to conceptual advantages over standard formulations while in accordance with observational data. In the way that was proposed the fundamental problem of cosmology, the choice of local symmetries affects the rule of evolution of states. The concept of symmetry finds its formulation independently of physical theories in the group theory formalism, but we will consider an extension of the idea, with wider applicability, the theory of Hopf algebras, which is about symmetries of algebraic structures. That extension is also useful to deal with symmetries of non-commutative spaces, one of the main physical proposals that affects the structure of space-time symmetries. The expression, local symmetries, by itself, does not say too much without considering realization rules. Those rules depend on mathematical structure of observables in the theory. Under very general hypothesis that do not specify a particular theory, it is possible to show, not as a formal mathematical theorem, but as a technically well motivated hypothesis, that only two types of physical theories do exist: The classical ones and the quantum ones. We are going to work under those hypothesis, which can be algebraically formulated assuming a C*-algebra structure for physical observables, another motivation for the use of algebraic structures like Hopf algebras for the description of nature\'s symmetries
|
29 |
Algebras biquaternionicas : construção, classificação e condições de existencia via formas quadraticas e involuções / Biquaternion algebras : construction, classification and existence condition through quadratic forms and involutionsFerreira, Mauricio de Araujo, 1982- 17 February 2006 (has links)
Orientador: Antonio Jose Engler / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-05T18:56:31Z (GMT). No. of bitstreams: 1
Ferreira_MauriciodeAraujo_M.pdf: 1033477 bytes, checksum: 8d697b5cdeb1a633c1270a5e2f919de7 (MD5)
Previous issue date: 2006 / Resumo: Neste trabalho, estudamos as álgebras biquaterniônicas, que são um tipo especial de álgebra central simples de dimensão 16, obtida como produto tensorial de duas álgebras de quatérnios. A teoria de formas quadráticas é aplicada para estudarmos critérios de decisão sobre quando uma álgebra biquaterniônica é de divisão e quando duas destas álgebras são isomorfas. Além disso, utilizamos o u-invariante do corpo para discutirmos a existência de álgebras biquaterniônicas de divisão sobre o corpo. Provamos também um resultado atribuído a A. A. Albert, que estabelece critérios para decidir quando uma álgebra central simples de dimensão 16 é de fato uma álgebra biquaterniônica, através do estudo de involuções. Ao longo do trabalho, construímos vários exemplos concretos de álgebras biquaterniônicas satisfazendo propriedades importantes / Mestrado / Algebra / Mestre em Matemática
|
30 |
Relações de dispersão deformadas na cosmologia inflacionária / Dispersion relations in inflationary cosmologyUlisses Diego Almeida Santos Machado 24 September 2012 (has links)
Relação de dispersão é outro nome para a função Hamiltoniana, cujo conhecimento especica completamente a dinâmica de um sistema no formalismo da mecânica classica. Sua escolha está intimamente vinculada às simetrias do sistema e, no contexto cosmologico aqui apresentado, com as simetrias locais obedecidas pelas leis fsicas. Mais ainda, a contribuição da materia na dinâmica cosmologica reflete a escolha do grupo local de simetrias das leis fsicas. Por outro lado, o problema fundamental da cosmologia pode ser definido como a construção de um modelo de evolução temporal de estados que, sob as hipoteses mais simples sobre estados iniciais (digamos, que demande a menor quantidade de informação possível para serem enunciadas), prediga o estado atual observado. O paradigma inacionario é atualmente a ideia que melhor cumpre esta denição, uma vez que prediz que uma grande variedade de condições iniciais leva a aspectos fundamentais do universo observado. Contudo, os mecanismos usuais de realização da inflação sofrem de problemas conceituais. O ponto de vista deste trabalho e que a realização convencional da inflação, isto é, atraves dos campos escalares minimamente acoplados, é a formulação localmente relativisticamente invariante da inflação. A maneira de incluir quebras e deformações da estrutura de simetrias locais na cosmologia é não única e está associado ao chamado problema trans Planckiano da inflação. Analogamente, a motivação conceitual para incluir esse tipo de modicação tampouco é unica. Dependendo do esquema de realização, a versão localmente não relativstica da mesma pode apresentar graves diculdades de conciliação com observações atuais, ou apresentar vantagens conceituais em relacão ao modelo padrão de inflacão, enquanto em conformidade com observações cosmológicas. Da maneira como foi posto o problema fundamental da cosmologia, a escolha das simetrias locais influi na regra de evolução dos estados. O conceito de simetrias encontra sua formulação independente de teorias físicas no formalismo da teoria de grupos, mas consideraremos uma extensão da ideia, de aplicabilidade mais geral, a teoria das algebras de Hopf que, de certo modo, trata das simetrias de estruturas algebricas. Esta extensão é útil inclusive no trato de simetrias dos espacos não comutativos, uma das principais propostas fsicas que em última analise afeta a estrutura de simetrias locais do espaco-tempo. A expressão simetrias locais, por si só, não diz muito sem a consideração de regras de realização. Essas regras dependem da estrutura matematica das observaveis da teoria. Sob hipoteses muito gerais, que não especicam uma teoria em particular, é possível mostrar, não como um teorema matematico formal, mas como uma hipotese tecnicamente bem motivada, que existem apenas dois tipos de teorias fsicas: as classicas e as quânticas. Trabalharemos sob essas hipoteses, as quais se formulam algebricamente assumindo a estrutura de C*-álgebra para as observaveis físicas, outra motivação para o uso das álgebras de Hopf para descrição das simetrias da natureza. / Dispersion relation is another name for the Hamiltonian function whose knowledge completely specifies the dynamics in the formalism of classical mechanics. Its choice is intimately related to the symmetries of the system, and, in the cosmological context here exposed, with the local space-time symmetries obeyed by physical laws. For the other side, the fundamental problem of cosmology can be defined as a construction of a time evolution model of states which, under simplest possible hypothesis concerning initial conditions (say, which demands the minimal amount of information to be specified), predicts the present observed state. The inflationary paradigm is currently the idea which better accomplishes this definition, since it predicts that a great variety of initial conditions lead to essential aspects of observed universe. The usual mechanisms of inflation suffer, however, with conceptual problems. The point of view of this work is that the usual realization of inflation based on weakly coupled scalar fields is the local relativistic invariant realization. The way of including breaks and deformations of the local space-time symmetries is not unique and it is associated to the so called Trans-Planckian problem of inflation. Analogously, the motivation to include this kind of modification is neither unique. Depending of the scheme of realization, the locally non-relativistic version may lead to serious difficulties in conciliation with observations, or to conceptual advantages over standard formulations while in accordance with observational data. In the way that was proposed the fundamental problem of cosmology, the choice of local symmetries affects the rule of evolution of states. The concept of symmetry finds its formulation independently of physical theories in the group theory formalism, but we will consider an extension of the idea, with wider applicability, the theory of Hopf algebras, which is about symmetries of algebraic structures. That extension is also useful to deal with symmetries of non-commutative spaces, one of the main physical proposals that affects the structure of space-time symmetries. The expression, local symmetries, by itself, does not say too much without considering realization rules. Those rules depend on mathematical structure of observables in the theory. Under very general hypothesis that do not specify a particular theory, it is possible to show, not as a formal mathematical theorem, but as a technically well motivated hypothesis, that only two types of physical theories do exist: The classical ones and the quantum ones. We are going to work under those hypothesis, which can be algebraically formulated assuming a C*-algebra structure for physical observables, another motivation for the use of algebraic structures like Hopf algebras for the description of nature\'s symmetries
|
Page generated in 0.0564 seconds