• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kinematická geometrie v rovině / Kinematic Geometry in the Plane

Javorská, Zdeňka January 2016 (has links)
Diploma thesis is divided into three chapters. In first chapter are explained elementary ideas of kinematic geometry in the plane included not just images but also dynamic files made in software GeoGebra. Second chapter is about specific motions in the plane. It describes construstion of the curves in synthetic and analytic way. Every motion has its own file with animation of that motion. Last chapter devoted to history of some curves and also to aplication of kinematic geometry in real life. This thesis is useful for university students of descriptive geometry, but it also may help as motivation for high school students, mainly students of technical schools.
2

Optimalizace výroby těžkých ocelových odlitků / Optimization of heavy steel castings manufacture

Procházka, Zdeněk January 2012 (has links)
The Master’s thesis was conducted under the project FR-TI1/070 “Optimalization of heavy steel casting manufacture” in cooperation with ŽĎAS a. s. foundry. It evaluates rate of conchoidal fracture in samples extracted from experimental castings. The testing bar for the static tensile test were extracted from thermal axis of casting. The research part describes ways of deoxidating the liquid metal and usage of separate deoxidating chemical parts, followed by summary of research knowledge on conchoidal fractures. In the practical part, the process of sample evaluation is described. The conchoidal fracture, the surface of which was evaluated on the fracture surfaces, influences mechanical qualities of cast steel. Simultaneously, impacts of metallurgical factors on rate of conchoidal fracture were examined
3

Studium slévárenských vad v masivních odlitcích / Study of foundry defects in heavy castings

Čech, Jan January 2013 (has links)
A massive castings defects are examined in this doctoral thesis, specialise in steels passing through peritectic transformation. There are typical types of defects at massive steel castings, as contrasted to „ordinary“ internal and surface ones. For massive steel castings are typical defects under feeders like conchoidal fractures, segregations, microporesities, reoxidation products. Combination of Al and Zr is an ordinary final deoxidation of EOP and LF steel for castings in ŽĎAS a.s. foundry. The aim of Al + Zr combination was to both deep deoxidation by Al (decrease of bubbles risk) and denitrification by Zr (decrease of conchoidal fractures). This theses refute premission mentioned above and verified persisting risk of defects under massive feeders, even though Al + Zr deoxidation is used. A final deoxidation by increased amount of Al was examinated, in combination with other deoxidation agents. Castings had 11 [cm] maximal modulus, and occurence of conchoidal fracture, reoxidation products and primary austenite grain size was evaluated. A selected optimal final deoxidations (Al, Al+Ti, Al+Zr) as a result from experiment described above, were evaluated on castings with 15 [cm] maximal modulus. The result of experiment is, that is not possible to repeatedly produce massive steel casting using EOP metallurgical equipment without defects under feeders, despite of deoxidation and pouring temperature optimalization. The defect indications look like conchoidal fracture, but there are microporesity and impurities instead. Finally, castings with maximal modulus 15 [cm] were produced using so called secondary metallurgy (LF, VD). Secondary metallurgy allowed to both significant decrease of sulfur and degassing of melted metal. Only this metallurgical procedure guarantees production of heavy steel castings without typical defects under massive feeders
4

Studium slévárenských vad v masivních odlitcích / RESEARCH OF HEAVY CASTING METALLURGICAL DEFECTS

Čech, Jan January 2013 (has links)
A massive castings defects are examined in this doctoral thesis, specialise in steels passing through peritectic transformation. There are typical types of defects at massive steel castings, as contrasted to „ordinary“ internal and surface ones. For massive steel castings are typical defects under feeders like conchoidal fractures, segregations, microporesities, reoxidation products. Combination of Al and Zr is an ordinary final deoxidation of EOP and LF steel for castings in ŽĎAS a.s. foundry. The aim of Al + Zr combination was to both deep deoxidation by Al (decrease of bubbles risk) and denitrification by Zr (decrease of conchoidal fractures). This theses refute premission mentioned above and verified persisting risk of defects under massive feeders, even though Al + Zr deoxidation is used. A final deoxidation by increased amount of Al was examinated, in combination with other deoxidation agents. Castings had 11 [cm] maximal modulus, and occurence of conchoidal fracture, reoxidation products and primary austenite grain size was evaluated. A selected optimal final deoxidations (Al, Al+Ti, Al+Zr) as a result from experiment described above, were evaluated on castings with 15 [cm] maximal modulus. The result of experiment is, that is not possible to repeatedly produce massive steel casting using EOP metallurgical equipment without defects under feeders, despite of deoxidation and pouring temperature optimalization. The defect indications look like conchoidal fracture, but there are microporesity and impurities instead. Finally, castings with maximal modulus 15 [cm] were produced using so called secondary metallurgy (LF, VD). Secondary metallurgy allowed to both significant decrease of sulfur and degassing of melted metal. Only this metallurgical procedure guarantees production of heavy steel castings without typical defects under massive feeders

Page generated in 0.0565 seconds