• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Air gaps in protective clothing during flash fire exposure

Ghazy, Ahmed 22 September 2011
Protective clothing is widely used in many industries and applications to provide protection against fire exposure. Exposure to fire can result in skin burn injuries that range from first-degree to third-degree burn injury depending on the exposure intensity and duration. Within the firefighting community, and especially the petroleum and petrochemical industries flash fire is one of the possible fire hazards for workers. Exposure to flash fire is usually of short duration (a few seconds) until the worker runs away from the fire location. The typical protective clothing system consists of a fire resistant fabric, the human skin, and an air gap between the fabric and skin. The protective performance of the clothing is evaluated based on the total energy transfer from the fabric to the skin through the air gap causing burn injury to the skin. Therefore the air gap between the protective clothing and skin plays an important role in determining the protection level provided by the clothing since the energy transfer through the air gap determines the amount of energy received by the skin. The more realistic the analysis of the air gap, the more reliable the evaluation of the protective performance of the clothing. This study introduces a more realistic analysis for the air gap between protective clothing and the skin compared to that found in the literature. More specifically, the study accounts for the combined conduction-radiation heat transfer through the air gap, which was treated as a thermal radiation participating medium with temperature dependent thermophysical properties. A finite volume model was developed to simulate the transient heat transfer in a single layer protective clothing system with radiation heat transfer. The model was employed to investigate the influence of the conduction-radiation heat transfer through the air gap on the overall heat transfer through the protective clothing system and hence on its protective performance. The influence of different protective clothing parameters on the combined conduction-radiation heat transfer through the air gap such as the air gap absorption coefficient, air gap width, fabric thickness, and fabric backside emissivity was studied. A comprehensive study of the influence of a periodic variation in the air gap width and associated inflow of cool air due to the motion of the person wearing the clothing on its protective performance was carried out. A wide range of variation in the frequency and amplitude of the fabric periodic movement was considered to capture different scenarios for the wearers motion. Finally, a finite volume model was developed to simulate the transient heat transfer in multiple layers firefighters protective clothing. The model considered the combined conduction-radiation heat transfer in the air gaps entrapped between the clothing layers, which were treated as thermal radiation participating media. The influence of each air gap on the overall performance of the clothing was investigated as well. The improved air gap model is a significant improvement for modeling heat transfer in protective clothing. It was used to obtain a more detailed knowledge of the theoretical performance of such clothing, e.g. it was found that reducing the fabric backside emissivity was more effective in improving the clothing protective performance than increasing the fabric thickness. It was also observed that the motion of the person wearing the clothing has a significant effect on the performance of the clothing: an increase in the frequency of the fabric movement improves the protection provided by the clothing, primarily due to the more frequent inflow of cool air, while an increase in the amplitude of the fabric movement reduces the protection provided by the clothing by concentrating the exposure on the skin. Finally, the air gaps entrapped between the clothing layers in firefighters protective clothing were found to improve the clothing performance, and the influence of the air gap between the moisture barrier and the thermal liner is greater than that of the air gap between the outer shell and the moisture barrier.
2

Air gaps in protective clothing during flash fire exposure

Ghazy, Ahmed 22 September 2011 (has links)
Protective clothing is widely used in many industries and applications to provide protection against fire exposure. Exposure to fire can result in skin burn injuries that range from first-degree to third-degree burn injury depending on the exposure intensity and duration. Within the firefighting community, and especially the petroleum and petrochemical industries flash fire is one of the possible fire hazards for workers. Exposure to flash fire is usually of short duration (a few seconds) until the worker runs away from the fire location. The typical protective clothing system consists of a fire resistant fabric, the human skin, and an air gap between the fabric and skin. The protective performance of the clothing is evaluated based on the total energy transfer from the fabric to the skin through the air gap causing burn injury to the skin. Therefore the air gap between the protective clothing and skin plays an important role in determining the protection level provided by the clothing since the energy transfer through the air gap determines the amount of energy received by the skin. The more realistic the analysis of the air gap, the more reliable the evaluation of the protective performance of the clothing. This study introduces a more realistic analysis for the air gap between protective clothing and the skin compared to that found in the literature. More specifically, the study accounts for the combined conduction-radiation heat transfer through the air gap, which was treated as a thermal radiation participating medium with temperature dependent thermophysical properties. A finite volume model was developed to simulate the transient heat transfer in a single layer protective clothing system with radiation heat transfer. The model was employed to investigate the influence of the conduction-radiation heat transfer through the air gap on the overall heat transfer through the protective clothing system and hence on its protective performance. The influence of different protective clothing parameters on the combined conduction-radiation heat transfer through the air gap such as the air gap absorption coefficient, air gap width, fabric thickness, and fabric backside emissivity was studied. A comprehensive study of the influence of a periodic variation in the air gap width and associated inflow of cool air due to the motion of the person wearing the clothing on its protective performance was carried out. A wide range of variation in the frequency and amplitude of the fabric periodic movement was considered to capture different scenarios for the wearers motion. Finally, a finite volume model was developed to simulate the transient heat transfer in multiple layers firefighters protective clothing. The model considered the combined conduction-radiation heat transfer in the air gaps entrapped between the clothing layers, which were treated as thermal radiation participating media. The influence of each air gap on the overall performance of the clothing was investigated as well. The improved air gap model is a significant improvement for modeling heat transfer in protective clothing. It was used to obtain a more detailed knowledge of the theoretical performance of such clothing, e.g. it was found that reducing the fabric backside emissivity was more effective in improving the clothing protective performance than increasing the fabric thickness. It was also observed that the motion of the person wearing the clothing has a significant effect on the performance of the clothing: an increase in the frequency of the fabric movement improves the protection provided by the clothing, primarily due to the more frequent inflow of cool air, while an increase in the amplitude of the fabric movement reduces the protection provided by the clothing by concentrating the exposure on the skin. Finally, the air gaps entrapped between the clothing layers in firefighters protective clothing were found to improve the clothing performance, and the influence of the air gap between the moisture barrier and the thermal liner is greater than that of the air gap between the outer shell and the moisture barrier.
3

Application of Variation of Parameters to Solve Nonlinear Multimode Heat Transfer Problems

Moore, Travis J 01 October 2014 (has links) (PDF)
The objective of this work is to apply the method of variation of parameters to various direct and inverse nonlinear, multimode heat transfer problems. An overview of the general method of variation of parameters is presented and applied to a simple example problem. The method is then used to obtain solutions to three specific extended surface heat transfer problems: 1. a radiating annular fin, 2. convective and radiative exchange between the surface of a continuously moving strip and its surroundings, and 3. convection from a fin with temperature-dependent thermal conductivity and variable cross-sectional area. The results for each of these examples are compared to those obtained using other analytical and numerical methods. The method of variation of parameters is also applied to the more complex problem of combined conduction-radiation in a one-dimensional, planar, absorbing, emitting, non-gray medium with non-gray opaque boundaries. Unlike previous solutions to this problem, the solution presented here is exact. The model is verified by comparing the temperature profiles calculated from this work to those found using numerical methods for both gray and non-gray cases. The combined conduction-radiation model is then applied to determine the temperature profile in a ceramic thermal barrier coating designed to protect super alloy turbine blades from large and extended heat loads. Inverse methods are implemented in the development of a non-contact method of measuring the properties and temperatures within the thermal barrier coating. Numerical experiments are performed to assess the effectiveness of this measurement technique. The combined conduction-radiation model is also applied to determine the temperature profile along the fiber of an optical fiber thermometer. An optical fiber thermometer consists of an optical fiber whose sensing tip is coated with an opaque material which emits radiative energy along the fiber to a detector. Inverse methods are used to infer the tip temperature from spectral measurements made by the detector. Numerical experiments are conducted to assess the effectiveness of these methods. Experimental processes are presented in which a coating is applied to the end of an optical fiber and connected to an FTIR spectrometer. The system is calibrated and the inverse analysis is used to infer the tip temperature in various heat sources.
4

Análise da transferência de calor acoplada por condução e radiação em meios semitransparentes com aplicação ao método flash

Rodrigues, Pedro Sinval Ferreira 01 March 2013 (has links)
Made available in DSpace on 2015-05-08T14:59:47Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 3702525 bytes, checksum: d629112a30790123601bde3a6b3ab9b0 (MD5) Previous issue date: 2013-03-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The emergence of new materials has generated a significant growth for determination with accuracy of your thermophysical properties. The knowledge of these properties for several kinds of materials is essential for any research or engineering project that the heat transfer is relevant, because it´s from these that the rates of heat transfer in a process can be calculated. Method flash is one that stands out most among methods for thermal characterization of materials, in that the front surface of a sample is subjected to an energy pulse of high intensity and short duration, at the same time the temperature of the back surface is measured to determine the thermal diffusivity of the material. This thesis presents a methodology to thermal characterization of semitransparent material using method flash. For this, is made an analysis of the problem of heat transfer with coupling conduction-radiation, where the simultaneous solution of energy equation and the radiative transfer equation (RTE) makes necessary. The finite volume method was used to numerically solve the energy equation and the discrete ordinates method to solve the ETR. A computer code was developed in MATLAB to solve the equations, which is tested and validated with existing cases in the literature. / O crescente aparecimento de novos materiais tem gerado um aumento bastante expressivo na demanda pela determinação com maior exatidão e menor incerteza de medição das suas propriedades termofísicas. O conhecimento destas propriedades para os diversos tipos de materiais é essencial em qualquer pesquisa ou projeto de engenharia onde a transferência de calor tenha relevância, pois é a partir destas que podem ser feitos os cálculos das taxas de transferência de calor presentes num determinado processo. Dentre os métodos utilizados para caracterização térmica dos materiais, o método flash é um dos que mais se destaca. Nele a superfície frontal de uma amostra é submetida a um pulso de energia de alta intensidade e curta duração, sendo o aumento da temperatura na superfície traseira medido e utilizado para determinar a difusividade térmica do material. Neste contexto, o presente trabalho tem como objetivo apresentar uma metodologia para caracterização térmica de materiais semitransparentes através do método flash. Para isso, é feita uma análise do problema da transferência de calor com acoplamento conduçãoradiação, onde uma solução simultânea da equação da energia e da equação da transferência radiativa (ETR) se faz necessária. O método dos volumes finitos foi utilizado para resolver numericamente a equação da energia e o método das ordenadas discretas para resolver a ETR. Um código computacional em MATLAB foi elaborado para resolução das equações obtidas, sendo este testado e validado com casos existentes na literatura.
5

Modélisation du transfert thermique au sein de matériaux poreux multiconstituants / Modeling of heat transfer within porous multiconstituent materials

Niezgoda, Mathieu 11 December 2012 (has links)
Le CEA travaille sur des matériaux poreux – alvéolaires, composites, céramiques, etc. – et cherche à optimiser leurs propriétés pour des utilisations spécifiques. Ces matériaux, souvent composés de plusieurs constituants, ont en général une structure complexe avec une taille de pores de quelques dizaines de microns. Ils sont mis en oeuvre dans des systèmes de grande échelle, supérieure à leurs propres échelles caractéristiques, dans lesquels on les considère comme équivalents à des milieux homogènes, sans prendre en compte sa microstructure locale, pour simuler leur comportement dans leur environnement d’utilisation.Nous nous intéressons donc à la caractérisation des propriétés thermiques effectives de matériaux à microstructure hétérogène en cherchant à déterminer par méthode inverse en fonction de la température la diffusivité thermique qu’ils auraient s’ils étaient homogènes.L’identification de la diffusivité de matériaux poreux et/ou semi-transparents est rendue difficile par le couplage conducto-radiatif fort qui peut se développer rapidement dans ces milieux avec une augmentation de la température. Nous avons donc modélisé le transfert de chaleur couplé conducto-radiatif en fonction de la température au sein de matériaux poreux multiconstituants à partir de leur microstructure numérisée en voxels. Notre démarche consiste à nous appuyer sur la microstructure 3D obtenue par tomographie. Ces microstructures servent de support numérique à cette modélisation qui permet d’une part de simuler tout type d’expériences thermiques numériques – en particulier la méthode flash dont les résultats nous permettent de déduire la diffusivité thermique –, et d’autre part de reproduire le comportement thermique de ces échantillons dans leur condition d’utilisation. / The CEA works a great deal with porous materials – carbon composites, ceramics – and aims to optimize their properties for specific uses. These materials can be composed of several constituents and generally has a complex structure with pore size of several tens of micrometers. It is used in large-scale systems that are bigger than its own characteristic scale in which they are considered as equivalent to a homogeneous medium for the simulation of its behavior in its using environment without taking into account its local morphology. We are especially interested in the effective thermal diffusivity of heterogeneous materials that we estimate as a function of temperature with the help of an inverse method by considering they are homogeneous.The identification of the diffusivity of porous and/or semitransparent materials is made difficult because of the strong conducto-radiative coupling can quickly occur when the temperature increases. We have thus modeled the coupled conductive and radiative heat transfer as a function of the temperature within porous multiconstituent materials from their morphology discretized into a set of homogeneous voxels. We have developed a methodology that consists in starting from a 3D-microstructure of the studied materials obtained by tomography. The microstructures constitute the numerical support to this modeling that renders it possible, on the one hand, to simulate any kind of numerical thermal experiments, especially the flash method whose the results render it possible to estimate the thermal diffusivity, and on the other hand, to reproduce the thermal behavior of our materials in their using conditions.

Page generated in 0.1277 seconds