1 |
The effects of age and unloading on human skeletal muscle connective tissueHaus, Jacob M. January 2007 (has links)
Intramuscular connective tissue is critical in maintaining muscle structure and the transfer of force from contractile elements to the bone. We examined intramuscular connective tissue characteristics in young and old men and women, as well as men and women subjected to simulated microgravity. We hypothesized that intramuscular collagen content, collagen cross-linking and formation of advanced glycation endproducts of old individuals would be greater than young, and that intramuscular collagen content would be elevated following prolonged periods of unloading spanning 35, 60 and 90 days. Vastus lateralis muscle biopsies revealed that intramuscular collagen (Young: 9.6±1.1, Old: 10.2±1.2 ug•mg muscle wet wf-') and collagen cross-links (hydroxylysylpyridinoline, HP) (Young: 395±65, Old: 351±45 mmol HP•mol collagen-1) were unchanged (p>0.05) with aging. The advanced glycation endproduct, pentosidine, was increased (p<0.05) by 203% (Young: 5.2±1.3, Old: 15.9±4.5 mmol pentosidine•mol collagen"') with aging. With unloading, collagen content of the vastus lateralis was unchanged (p>0.05) following all time periods but was found to be elevated (p<0.05) in the soleus following 90 days of unloading. Furthermore, baseline collagen content was found to greater (p<0.05) in the soleus compared to the vastus lateralis. These results suggest the age related decline in whole muscle function is not related to increases in intramuscular collagen content or cross-linking but may be related to the accumulation of advanced glycation endproducts. Muscle function following unloading does not appear to be impacted by collagen content in the vastus lateralis but may play a role in the soleus. / School of Physical Education, Sport, and Exercise Science
|
Page generated in 0.1169 seconds