• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 12
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Quelques contributions à la modélisation et simulation numérique des écoulements diphasiques compressibles / Some contributions to the theoretical modeling and numerical simulation of compressible two-phase flows

Chiapolino, Alexandre 18 December 2018 (has links)
Ce manuscrit porte sur la modélisation et la simulation numérique d’écoulements diphasiques compressibles. Dans ce contexte, les méthodes d’interfaces diffuses sont aujourd’hui bien acceptées. Cependant, un progrès est encore attendu en ce qui concerne la précision de la capture numérique de ces interfaces. Une nouvelle méthode est développée et permet de réduire significativement cette zone de capture. Cette méthode se place dans le contexte des méthodes numériques de type “MUSCL”, très employées dans les codes de production, et sur maillages non-structurés. Ces interfaces pouvant être le lieu où une transition de phase s’opère, celle-ci est considérée au travers d’un processus de relaxation des énergies libres de Gibbs. Un nouveau solveur de relaxation à thermodynamique rapide est développé et s’avère précis, rapide et robuste y compris lors du passage vers les limites monophasiques. En outre, par rapport aux applications industrielles envisagées, une extension de la thermodynamique des phases et du mélange est nécessaire. Une nouvelle équation d’état est développée en conséquence. La formulation est convexe et est basée sur l’équation d’état “Noble-Abel-Stiffened-Gas”. Enfin, sur un autre plan la dispersion de fluides non-miscibles sous l’effet de la gravité est également abordée. Cette problématique fait apparaître de larges échelles de temps et d’espace et motive le développement d’un nouveau modèle multi-fluide de type “shallow water bi-couche”. Sa résolution numérique est également traitée / This manuscript addresses the theoretical modeling and numerical simulation of compressible two-phase flows. In this context, diffuse interface methods are now well-accepted but progress is still needed at the level of numerical accuracy regarding their capture. A new method is developed in this research work, that allows significant sharpening. This method can be placed in the framework of MUSCL-type schemes, widely used in production codes and on unstructured grids. Phase transition is addressed as well through a relaxation process relying on Gibbs free energies. A new instantaneous relaxation solver is developed and happens to be accurate, fast and robust. Moreover, in view of the intended industrial applications, an extension of the thermodynamics of the phases and of the mixture is necessary. A new equation of state is consequently developed. The formulation is convex and based on the “Noble-Abel-Stiffened-Gas” equation of state. In another context, the dispersion of non-miscible fluids under gravity effects is considered as well. This problematic involves large time and space scales and has motivated the development of a new multi-fluid model for “two-layer shallow water” flows. Its numerical resolution is treated as well
12

Adaptation de maillage anisotrope par prescription de champ de métriques appliquée aux simulations instationnaires en géométrie mobile

Olivier, Géraldine 22 April 2011 (has links) (PDF)
Cette thèse s'intéresse aux simulations dépendantes du temps impliquant des géometries fixes ou mobiles. Ce type de simulations est l'objet d'attentes grandissantes de la part des industriels, qui souhaiteraient voir réaliser ce type de calculs de façon systématique au sein de leurs centres de recherche, ce qui n'est clairement pas le cas à l'heure actuelle. Ce travail tente de satisfaire en partie cette demande et vise notamment à améliorer la précision ainsi que l'efficacité en termes de temps de calcul des algorithmes actuellement utilisés dans ce contexte. Les méthodes d'adaptation de maillage anisotrope par prescription d'un champ de métriques, qui ont aujourd'hui atteint une certaine maturité, notamment dans leur application aux simulations stationnaires, constituent une piste très prometteuse pour l'amélioration des calculs évoluant en temps, mais leur extension dans ce contexte est loin d'être triviale. Quant à leur utilisation sur les simulations en géométries mobiles, seules quelques tentatives peuvent être répertoriées, et très peu portent sur des problèmes réalistes en trois dimensions. Cette étude présente plusieurs nouveautés sur ces questions, notamment l'extension de l'adaptation de maillage multi-échelles par champ de métriques aux problèmes instationnaires en géométries fixes et mobiles. Par ailleurs, essentiellement dans une optique de réduction des temps de calculs, une stratégie originale à été adoptée pour réaliser des calculs impliquant des maillages mobiles. Notamment, il est démontré par la pratique dans cette thèse qu'il possible de déplacer des objets en trois dimensions sur de grandes distances en maintenant le nombre de sommets du maillage constant, c'est-à-dire en limitant les types d'opérations de modification de maillage autorisés. Il en résulte un gain conséquent en terme de temps de calcul aussi bien au niveau du déplacement de maillage qu'au niveau de la résolution numérique. Par ailleurs, un nouveau schéma est proposé qui permet de gérer les changements de connectivité du maillage de manière cohérente avec la description Arbitrary-Lagrangian-Eulerian des équations physiques. La plupart de ces nouvelles méthodes ont été appliquées à la simulation d'écoulements fluides compressibles autour de géometries complexes en deux et trois dimensions d'espace.

Page generated in 0.0495 seconds