• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Consistent energy treatment for radiation transport methods

Douglass, Steven James 30 March 2012 (has links)
A condensed multigroup formulation is developed which maintains direct consistency with the continuous energy or fine-group structure, exhibiting the accuracy of the detailed energy spectrum within the coarse-group calculation. Two methods are then developed which seek to invert the condensation process turning the standard one-way condensation (from fine-group to coarse-group) into the first step of a two-way iterative process. The first method is based on the previously published Generalized Energy Condensation, which established a framework for obtaining the fine-group flux by preserving the flux energy spectrum in orthogonal energy expansion functions, but did not maintain a consistent coarse-group formulation. It is demonstrated that with a consistent extension of the GEC, a cross section recondensation scheme can be used to correct for the spectral core environment error. A more practical and efficient new method is also developed, termed the "Subgroup Decomposition (SGD) Method," which eliminates the need for expansion functions altogether, and allows the fine-group flux to be decomposed from a consistent coarse-group flux with minimal additional computation or memory requirements. In addition, a new whole-core BWR benchmark problem is generated based on operating reactor parameters in 2D and 3D, and a set of 1D benchmark problems is developed for a BWR, PWR, and VHTR core.

Page generated in 0.1221 seconds