• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Convergence et stabilisation de systèmes dynamiques couplés et multi-échelles vers des équilibres sous contraintes : application à l’optimisation hiérarchique / Convergence and stabilization of coupled and multiscale dynamical systems towards constrained equilibria : application to hierarchical optimization

Noun, Nahla 20 June 2013 (has links)
Nous étudions la convergence de systèmes dynamiques vers des équilibres. En particulier, nous nous intéressons à deux types d'équilibres. D'une part, les solutions d'inéquations variationnelles sous contraintes qui interviennent aussi dans la résolution de problèmes d'optimisation hiérarchique. D'autre part l'état stable d'un système dynamique, c'est à dire l'état où l'énergie du système est nulle. Cette thèse est divisée en deux parties principales, chacune focalisée sur la recherche d'un de ces équilibres. Dans la première partie nous étudions une classe d'algorithmes explicite-implicites pour résoudre certaines inéquations variationnelles sous contraintes. Nous introduisons un algorithme proximal-gradient pénalisé, "splitting forward-backward penalty scheme". Ensuite, nous prouvons sa convergence ergodique faible vers un équilibre dans le cas général d'un opérateur maximal monotone, et sa convergence forte vers l'unique équilibre si l'opérateur est de plus fortement monotone. Nous appliquons aussi notre algorithme pour résoudre des problèmes d'optimisation sous contrainte ou hiérarchique dont les fonctions objectif et de pénalisation sont formées d'une partie lisse et d'une autre non lisse. En effet, nous démontrons la convergence faible de l'algorithme vers un optimum hiérarchique lorsque l'opérateur est le sous-différentiel d'une fonction convexe semi-continue inférieurement et propre. Nous généralisons ainsi plusieurs algorithmes connus et nous retrouvons leurs résultats de convergence en affaiblissant les hypothèses utilisées dans nombre d'entre eux.Dans la deuxième partie, nous étudions l'action d'un contrôle interne local sur la stabilisation indirecte d'un système dynamique couplé formé de trois équations d'ondes, le système de Bresse. Sous la condition d'égalité des vitesses de propagation des ondes, nous montrons la stabilité exponentielle du système. En revanche, quand les vitesses sont différentes, nous prouvons sa stabilité polynomiale et nous établissons un nouveau taux de décroissance polynomial de l'énergie. Ceci étend des résultats présents dans la littérature au sens où le contrôle est localement distribué (et non pas appliqué à tout le domaine) et nous améliorons le taux de décroissance polynomial de l'énergie pour des conditions au bord de type Dirichlet et Dirichlet-Neumann. / We study the convergence of dynamical systems towards equilibria. In particular, we are interested in two types of equilibria. On one hand solutions of constrained variational inequations that are also involved in the resolution of hierarchical optimization problems. On the other hand the stable state of a dynamical system, i.e. the state when the energy of the system is zero. The thesis is divided into two parts, each focused on one of these equilibria. In the first part, we study a class of forward-backward algorithms for solving constrained variational inequalities. We consider a splitting forward-backward penalty scheme. We prove the weak ergodic convergence of the algorithm to an equilibrium for a general maximal monotone operator, and the strong convergence to the unique equilibrium if the operator is an addition strongly monotone. We also apply our algorithm for solving constrained or hierarchical optimization problems whose objective and penalization functions are formed of a smooth and a non-smooth part. In fact, we show the weak convergence to a hierarchical optimum when the operator is the subdifferential of a closed convex proper function. We then generalize several known algorithms and we find their convergence results by weakening assumptions used in a number of them. In the second part, we study the action of a locally internal dissipation law in the stabilization of a linear dynamical system coupling three wave equations, the Bresse system. Under the equal speed wave propagation condition we show that the system is exponentially stable. Otherwise, when the speeds are different, we prove the polynomial stability and establish a new polynomial energy decay rate. This extends results presented in the literature in the sense that the dissipation law is locally distributed (and not applied in the whole domain) and we improve the polynomial energy decay rate with both types of boundary conditions, Dirichlet and Dirichlet-Neumann.

Page generated in 0.1342 seconds