• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 10
  • 10
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relating Constrained Motion to Force Through Newton's Second Law

Roithmayr, Carlos 06 April 2007 (has links)
When a mechanical system is subject to constraints its motion is in some way restricted. In accordance with Newton's second law, motion is a direct result of forces acting on a system; hence, constraint is inextricably linked to force. The presence of a constraint implies the application of particular forces needed to compel motion in accordance with the constraint; absence of a constraint implies the absence of such forces. The objective of this thesis is to formulate a comprehensive, consistent, and concise method for identifying a set of forces needed to constrain the behavior of a mechanical system modeled as a set of particles and rigid bodies. The goal is accomplished in large part by expressing constraint equations in vector form rather than entirely in terms of scalars. The method developed here can be applied whenever constraints can be described at the acceleration level by a set of independent equations that are linear in acceleration. Hence, the range of applicability extends to servo-constraints or program constraints described at the velocity level with relationships that are nonlinear in velocity. All configuration constraints, and an important class of classical motion constraints, can be expressed at the velocity level by using equations that are linear in velocity; therefore, the associated constraint equations are linear in acceleration when written at the acceleration level. Two new approaches are presented for deriving equations governing motion of a system subject to constraints expressed at the velocity level with equations that are nonlinear in velocity. By using partial accelerations instead of the partial velocities normally employed with Kane's method, it is possible to form dynamical equations that either do or do not contain evidence of the constraint forces, depending on the analyst's interests.
2

Equations de contraintes en théorie de champ scalaire. / The Constraint Equations in a scalar-field theory.

Premoselli, Bruno 05 December 2014 (has links)
On étudie dans cette thèse le système d'Einstein-Lichnerowicz, aussi appelé système des contraintes conformes. C'est un système d'équations aux dérivées partielles nonlinéaires elliptiques, obtenu après application de la méthode conforme, qui intervient en théorie de la Relativité Générale, plus précisément dans l'analyse des équations d'Einstein comme un problème d'évolution.Le résultat principal de notre thèse, démontré en toutes dimensions supérieures ou égales à 3, est un résultat de stabilité du système des contraintes conformes. Il exprime la dépendance continue de l'ensemble des solutions du système des contraintes conformes en les grandeurs physiques de la méthode conforme. En ce sens, c'est un résultat de structure sur l'ensemble des solutions du système d'Einstein-Lichnerowicz.Ce résultat exprime aussi la pertinence physique d'une construction physique naturelle qui intervient dans le cadre de la méthode conforme, que nous appelons dans le manuscrit construction de Choquet-Bruhat-Geroch-Lichnerowicz et que nous décrivons en détail.Nous obtenons aussi dans cette thèse des résultats d'existence pour le système d'Einstein-Lichnerowicz. Un premier résultat d'existence est obtenu par des méthodes non-variationnelles. Un résultat indépendant de multiplicité est obternu comme conséquence du résultat de stabilité énoncé plus haut. / We investigate in this work the Einstein-Lichnerowicz constraints system, also called conformal constraints system. It is an elliptic system of nonlinear partial differential equations obtained through the conformal method, and arising in Mathematical General Relativity in the analysis of the Einstein equations as an evolution problem.Our main result, proven in any dimension greater than 3, is a stability result for the conformal constraints system. It asserts the continuous dependence of the set of solutions of the conformal constraints system in the physical parameters of the conformal method. It is then a structure result on the set of solutions of the Einstein-Lichnerowicz constraints system.Our result can be rephrased in terms of the physical relevance of a physical construction naturally arising in the context of the conformal method, that we call Choquet-Bruhat-Geroch-Lichnerowicz formalism and that we describe in detail.We also obtain in this work existence results for the Einstein-Lichnerowicz constraints system. A first existence result is obtained via non-variational methods. An independent multiplicity result is obtained as a consequence of the aforementioned stability result.
3

A Composite Frame/joint Super Element For Structures Strengthened By Externally Bonded Steel/frp Plates

Kaymak, Yalcin 01 January 2003 (has links) (PDF)
A materially non-linear layered beam super element is developed for the analysis of RC beams and columns strengthened by externally bonded steel/FRP plates. The elasto-plastic behavior of RC member is incorporated by its internally generated or externally supplied moment-curvature diagram. The steel plate is assumed to be elasto-plastic and the FRP laminate is assumed to behave linearly elastic up to rupture. The thin epoxy layer between the RC member and the externally bonded lamina is simulated by a special interface element which allows for the changing failure modes from steel plate yielding/FRP plate rupture to separation of the bonded plates as a result of bond failure in the epoxy layer. An empirical failure criterion based on test results is used for the epoxy material of the interface. The most critical aspect of such applications in real life frame structures is the anchorage conditions at the member ends and junctions. This has direct influence on the success and the effectiveness of the application. Therefore, a special corner piece anchorage element is also considered in the formulation of the joint super element, which establishes the fixity and continuity conditions at the member ends and the joints.
4

Sommes connexes généralisées pour des problèmes issus de la géométrie / Somme connesse generalizzate per problemi della geometria / Generalized connected sums for problems issued from the geometry

Mazzieri, Lorenzo 24 January 2008 (has links)
Ces deux dernières décennies, les techniques de somme connexe essentiellement basées sur des outils d'analyse ont permis de faire des progrès importants dans la compréhension de nombreux problèmes non linéaires issus de la géométrie (étude des métriques à courbure scalaire constante en géométrie Riemannienne, métriques auto-duales, métrique ayant des groupes d'holonomie spéciaux, métriques extrémales en géométrie Kaehlerienne, équations de Yang-Mills, étude des surfaces minimales et des surfaces à courbure moyenne constante, métriques d'Einstein, etc.). Ces techniques se sont avérées être un outil puissant pour démontrer l'existence de solutions à des problèmes hautement non linéaires. Si les techniques permettant d'effectuer des sommes connexes en des points isolés sont bien comprises et fréquemment utilisées, les techniques permettant d'effectuer des sommes connexes le long de sous-variétés ne sont pas encore bien maîtrisées. Le principal objectif de cette thèse est de combler (partiellement) cette lacune en développant de telles techniques applicables dans le cadre de l'étude des métriques à courbure scalaire constante et aussi dans le cadre de l'étude des équations de comptabilité d'Einstein en relativité générale / These last two decades the connected sum techniques, essentially based on analytical tools, are revealed to be a powerful instrument to understand solutions of several nonlinear problem issued from the geometry (constant scalar curvature metrics in Riemannian geometry, self-dual metrics, metrics with special holonomy group, extremal Kaehler metrics, Yang-Mills equations, minimal and constant mean curvature surfaces, Einstein metrics, etc.). Even tough the techniques which allows one to consider the connected sum at points for solutions of nonlinear PDE's are frequently used and deeply understood, the analogous techniques for connected sums along sub-manifolds have not been mastered yet. The main purpose of this thesis is to (partially) plug this gap by developing such techniques in the context of the constant scalar curvature metrics and the Einstein constraint equations in general relativity
5

Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive / Construction of solutions to the Einstein constrainit equations in general relativity and comments on the positive mass theorem

Nguyen, The-Cang 11 December 2015 (has links)
Dans cette thèse nous étudions deux problèmes issus de la relativité générale : la construction de données initiales pour le problème de Cauchy des équations d’Einstein et le théorème de la masse positive. Nous construisons tout d’abord des données initiales en utilisant la méthode dite conforme introduite par Lichnerowicz [Lichnerowicz, 1944], Y. Choquet-Bruhat–J. York [Choquet-Bruhat et York, 1980] et Y. Choquet-Bruhat–J. Isenberg– D. Pollack [Choquet-Bruhat et al., 2007a]. Plus particulièrement, nous étudions les équations –de contrainte conforme– qui apparaissent dans cette méthode sur des variétés riemanniennes compactes de dimension n > 3. Dans cette thèse, nous donnons une preuve simplifiée du résultat de [Dahl et al., 2012], puis nous étendons et nous généralisons les théorèmes de M. Holst–G. Nagy–G. Tsogtgerel [Holst et al., 2009] et de D. Maxwell [Maxwell, 2009] dans le cas de données initiales à courbure moyenne fortement nonconstante. Nous donnons au passage un point de vue unifié sur ces résultats. En parallèle, nous donnons des résultats de non-existence et de non-unicité pour les équations de la méthode conforme sous certaines hypothèses. / The aim of this thesis is the study of two topical issues arising from general relativity: finding initial data for the Cauchy problem with respect to the Einstein equations and the positive mass theorem. For the first issue, in the context of the conformal method introduced by Lichnerowicz [Lichnerowicz, 1944], Y. Choquet-Bruhat–J. York [Choquet-Bruhat et York, 1980] and Y. Choquet-Bruhat–J. Isenberg–D. Pollack [Choquet-Bruhat et al., 2007a], we consider the conformal constraint equations on compact Riemannian manifolds of dimension n > 3. In this thesis, we simplify the proof of [Dahl et al., 2012, Theorem 1.1], extend and sharpen the far-from CMC result proven by Holst– Nagy–Tsogtgerel [Holst et al., 2009], Maxwell [Maxwell, 2009] and give an unifying viewpoint of these results. Besides discussing the solvability of the conformal constraint equations, we will also show nonexistence and nonuniqueness results for solutions to the conformal constraint equations under certain assumptions.
6

Asymptotic staticity and tensor decompositions with fast decay conditions

Avila, Gastón January 2011 (has links)
Corvino, Corvino and Schoen, Chruściel and Delay have shown the existence of a large class of asymptotically flat vacuum initial data for Einstein's field equations which are static or stationary in a neighborhood of space-like infinity, yet quite general in the interior. The proof relies on some abstract, non-constructive arguments which makes it difficult to calculate such data numerically by using similar arguments. A quasilinear elliptic system of equations is presented of which we expect that it can be used to construct vacuum initial data which are asymptotically flat, time-reflection symmetric, and asymptotic to static data up to a prescribed order at space-like infinity. A perturbation argument is used to show the existence of solutions. It is valid when the order at which the solutions approach staticity is restricted to a certain range. Difficulties appear when trying to improve this result to show the existence of solutions that are asymptotically static at higher order. The problems arise from the lack of surjectivity of a certain operator. Some tensor decompositions in asymptotically flat manifolds exhibit some of the difficulties encountered above. The Helmholtz decomposition, which plays a role in the preparation of initial data for the Maxwell equations, is discussed as a model problem. A method to circumvent the difficulties that arise when fast decay rates are required is discussed. This is done in a way that opens the possibility to perform numerical computations. The insights from the analysis of the Helmholtz decomposition are applied to the York decomposition, which is related to that part of the quasilinear system which gives rise to the difficulties. For this decomposition analogous results are obtained. It turns out, however, that in this case the presence of symmetries of the underlying metric leads to certain complications. The question, whether the results obtained so far can be used again to show by a perturbation argument the existence of vacuum initial data which approach static solutions at infinity at any given order, thus remains open. The answer requires further analysis and perhaps new methods. / Corvino, Corvino und Schoen als auch Chruściel und Delay haben die Existenz einer grossen Klasse asymptotisch flacher Anfangsdaten für Einsteins Vakuumfeldgleichungen gezeigt, die in einer Umgebung des raumartig Unendlichen statisch oder stationär aber im Inneren der Anfangshyperfläche sehr allgemein sind. Der Beweis beruht zum Teil auf abstrakten, nicht konstruktiven Argumenten, die Schwierigkeiten bereiten, wenn derartige Daten numerisch berechnet werden sollen. In der Arbeit wird ein quasilineares elliptisches Gleichungssystem vorgestellt, von dem wir annehmen, dass es geeignet ist, asymptotisch flache Vakuumanfangsdaten zu berechnen, die zeitreflektionssymmetrisch sind und im raumartig Unendlichen in einer vorgeschriebenen Ordnung asymptotisch zu statischen Daten sind. Mit einem Störungsargument wird ein Existenzsatz bewiesen, der gilt, solange die Ordnung, in welcher die Lösungen asymptotisch statische Lösungen approximieren, in einem gewissen eingeschränkten Bereich liegt. Versucht man, den Gültigkeitsbereich des Satzes zu erweitern, treten Schwierigkeiten auf. Diese hängen damit zusammen, dass ein gewisser Operator nicht mehr surjektiv ist. In einigen Tensorzerlegungen auf asymptotisch flachen Räumen treten ähnliche Probleme auf, wie die oben erwähnten. Die Helmholtzzerlegung, die bei der Bereitstellung von Anfangsdaten für die Maxwellgleichungen eine Rolle spielt, wird als ein Modellfall diskutiert. Es wird eine Methode angegeben, die es erlaubt, die Schwierigkeiten zu umgehen, die auftreten, wenn ein schnelles Abfallverhalten des gesuchten Vektorfeldes im raumartig Unendlichen gefordert wird. Diese Methode gestattet es, solche Felder auch numerisch zu berechnen. Die Einsichten aus der Analyse der Helmholtzzerlegung werden dann auf die Yorkzerlegung angewandt, die in den Teil des quasilinearen Systems eingeht, der Anlass zu den genannten Schwierigkeiten gibt. Für diese Zerlegung ergeben sich analoge Resultate. Es treten allerdings Schwierigkeiten auf, wenn die zu Grunde liegende Metrik Symmetrien aufweist. Die Frage, ob die Ergebnisse, die soweit erhalten wurden, in einem Störungsargument verwendet werden können um die Existenz von Vakuumdaten zu zeigen, die im räumlich Unendlichen in jeder Ordnung statische Daten approximieren, bleibt daher offen. Die Antwort erfordert eine weitergehende Untersuchung und möglicherweise auch neue Methoden.
7

Etude mathématique de trous noirs et de leurs données initiales en relativité générale / Mathematical study of Black Hole spacetimes and of their initial data in General Relativity

Cortier, Julien 06 September 2011 (has links)
L'objet de cette thèse est l'étude mathématique de familles d'espaces-temps satisfaisant aux équations d'Einstein de la Relativité Générale. Deux approches sont considérées pour cette étude. La première partie, composée des trois premiers chapitres, examine les propriétés géométriques des espaces-temps d'Emparan-Reall et dePomeransky-Senkov, de dimension 5. Nous montrons qu'ils contiennent un trou noir, dont l'horizon des événements est à sections compactes non-homéomorphes à la sphère. Nous en construisons une extension analytique et prouvons que cette extension est maximale et unique dans une certaine classe d'extensions pour les espaces-temps d'Emparan-Reall. Nous établissons ensuite le diagramme de Carter-Penrose de ces extensions, puis analysons la structure de l'ergosurface des espaces-temps de Pomeransky-Senkov. La deuxième partie est consacrée à l'étude de données initiales, solutions des équations des contraintes, induites par les équations d'Einstein. Nous effectuons un recollement d'une classe de données initiales avec des données initiales d'espaces-temps de Kerr-Kottler-deSitter, en utilisant la méthode de Corvino. Nous construisons, d'autre part, des métriques asymptotiquement hyperboliques en dimension 3, satisfaisant les hypothèses du théorème de masse positive à l'exception de la complétude, et ayant un vecteur moment-énergie de genre causal arbitraire. / The aim of this thesis is the mathematical study of families of spacetimes satisfying the Einstein's equations of General Relativity. Two methodsare used in this context.The first part, consisting of the first three chapters of this work,investigates the geometric properties of the Emparan-Reall andPomeransky-Senkov families of 5-dimensional spacetimes. We show that they contain a black-hole region, whose event horizon has non-spherical compact cross sections. We construct an analytic extension, and show its maximality and its uniqueness within a natural class in the Emparan-Reallcase. We further establish the Carter-Penrose diagram for these extensions, and analyse the structure of the ergosurface of the Pomeransky-Senkovspacetimes.The second part focuses on the study of initial data, solutions of theconstraint equations induced by the Einstein's equations. We perform agluing construction between a given family of inital data sets andinitial data of Kerr-Kottler-de Sitter spacetimes, using Corvino'smethod.On the other hand, we construct 3-dimensional asymptotically hyperbolicmetrics which satisfy all the assumptions of the positive mass theorem but the completeness, and which display an energy-momentum vector of arbitry causal type.
8

Autour des équations de contrainte en relativité générale / On the Constraint Equations in General Relativity

Valcu, Caterina 25 September 2019 (has links)
Le but à long terme de mon travail de recherche est de trouver une alternative viable à la méthode conforme, qui nous permettrait de mieux comprendre la structure géométrique de l'espace des solutions des équations de contrainte. L'avantage du modèle de Maxwell (the drift model) par rapport aux modèles plus classiques est la présence des paramètres supplémentaires. Le prix à payer, par contre, sera que la complexité analytique du système correspondant. Ma thèse a été structuré en deux parties : a. Existence sous la condition de petitesse des données initiales. Nous avons montré que le système de Maxwell est raisonnable dans le sens où nous pouvons le résoudre, malgré sa forte nonliniarité, sous des conditions de petitesse sur ses coefficients, en dimension 3, 4 et 5. Par conséquent, l'ensemble des solutions est non-vide. b. Stabilité Nous montrons la stabilité des solutions du système: ce résultat est obtenu en dimension 3,4 et 5, dans le cas où la métrique est conformément plate, et le drift et petit / The long-term goal of my work is to find a viable alternative to the conformal method, which would allow us to better understand the geometry of the space of solutions of the constraint equations. The advantage of Maxwell's model (the drift model) is the presence of additional parameters. Its downside, however, is that it proves to be much more difficult from an analytic standpoint. My thesis is structued in two parts: a. Existence under suitable smallness conditions. We show that Maxwell's system is sufficiently reasonable: it can be solved even given the presence of focusing non linearities. We prove this under smallness conditions of its coefficients, and in dimensions 3,4 and 5. An immediate consequence is that the set of solutions is non-empty. b. Stability. We verify that the solutions of the system are stable: this result holds in dimensions 3,4 and 5, when the metric is conformally flat and the drift is small
9

Structure de variété de Hilbert et masse sur l'ensemble des données initiales relativistes faiblement asymptotiquement hyperboliques / Hilbert manifold structure and mass on the set of weakly asymptotically hyperbolic relativistic initial data

Fougeirol, Jérémie 30 June 2017 (has links)
La relativité générale est une théorie physique de la gravitation élaborée il y a un siècle, dans laquelle l'univers est modélisé par une variété Lorentzienne (N,gamma) de dimension 4 appelée espace-temps et vérifiant les équations d'Einstein. Lorsque l'on sépare la dimension temporelle des trois dimensions spatiales, les équations de contrainte découlent naturellement de la décomposition 3+1 des équations d'Einstein. Elles constituent une condition nécessaire et suffisante pour pouvoir considérer l'espace-temps N comme l'évolution temporelle d'une hypersurface Riemannienne (m,g) plongée dans N avec une seconde forme fondamentale K. Le triplet (m,g,K) constitue alors une donnée initiale solution des équations de contrainte dont on note C l'ensemble. Dans cette thèse, nous utilisons la méthode de Robert Bartnik pour établir la structure de sous-variété de Hilbert de C pour des données initiales faiblement asymptotiquement hyperboliques, dont la régularité peut être reliée à la conjecture de courbure L^{2} bornée. Les difficultés inhérentes au cas faiblement AH ont nécessité l'introduction de deux opérateurs différentiels d'ordre deux et l'obtention d'estimées de type Poincaré et Korn pour ces opérateurs. Une fois la structure de Hilbert obtenue, nous définissons une fonctionnelle masse lisse sur la sous-variété C et compatible avec nos conditions de faible régularité. L'invariance géométrique de la masse est étudiée et montrée, modulo une conjecture en faible régularité relative au changement de cartes au voisinage de l'infini. Enfin, nous faisons le lien entre les points critiques de la masse et les métriques statiques. / General relativity is a gravitational theory born a century ago, in which the universe is a 4-dimensional Lorentzian manifold (N,gamma) called spacetime and satisfying Einstein's field equations. When we separate the time dimension from the three spatial ones, constraint equations naturally follow on from the 3+1 décomposition of Einstein's equations. Constraint equations constitute a necessary condition,as well as sufficient, to consider the spacetime N as the time evolution of a Riemannian hypersurface (m,g) embeded into N with the second fundamental form K. (m,g,K) is then an element of C, the set of initial data solutions to the constraint equations. In this work, we use Robert Bartnik's method to provide a Hilbert submanifold structure on C for weakly asymptotically hyperbolic initial data, whose regularity can be related to the bounded L^{2} curvature conjecture. Difficulties arising from the weakly AH case led us to introduce two second order differential operators and we obtain Poincaré and Korn-type estimates for them. Once the Hilbert structure is properly described, we define a mass functional smooth on the submanifold C and compatible with our weak regularity assumptions. The geometrical invariance of the mass is studied and proven, only up to a weak regularity conjecture about coordinate changes near infinity. Finally, we make a correspondance between critical points of the mass and static metrics.
10

Des équations de contrainte en gravité modifiée : des théories de Lovelock à un nouveau problème de σk-Yamabe / On the constraint equations in modified gravity

Lachaume, Xavier 15 December 2017 (has links)
Cette thèse est consacrée au problème d’évolution des théories de gravité modifiée : après avoir rappelé ce qu’il en est pour la Relativité Générale (RG), nous exposons le formalisme n + 1 des théories ƒ(R), Brans-Dicke et tenseur-scalaire et redémontrons un résultat connu : le problème de Cauchy est bien posé pour ces théories, et les équations de contrainte se réduisent à celles de la RG avec un champ de matière. Puis nous effectuons la même décomposition n + 1 pour les théories de Lovelock et, ce qui est nouveau, ƒ(Lovelock). Nous étudions ensuite les équations de contrainte des théories de Lovelock et montrons qu’elles sont, dans le cas conformément plat et symétrique en temps, la prescription d’une somme de σk-courbures. Afin de résoudre cette équation de prescription, nous introduisons une nouvelle famille de polynômes semi-symétriques homogènes et développons des résultats de concavité pour ces polynômes. Nous énonçons une conjecture qui, si elle était avérée, nous permettrait de résoudre l’équation de prescription dans de nombreux cas : ∀ P;Q ∈ ℝ[X], avec deg P = deg Q = p, P et Q sont scindés => p ∑ k=0 P(k) Q(p-k) est scindé / This thesis is devoted to the evolution problem for modified gravity theories. After having explained this problem for General Relativity (GR), we present the n + 1 formalism for ƒ(R) theories, Brans-Dicke and scalar-tensor theories. We recall a known result: the Cauchy problem for these theories is well-posed, and the constraint equations are reduced to those of GR with a matter field. Then we proceed to the same n+1 decomposition for Lovelock and ƒ(Lovelock) theories, the latter being an original result. We show that in the locally conformally flat timesymmetric case, they can be written as the prescription of a sum of σk-curvatures. In order to solve the prescription equation, we introduce a new family of homogeneous semisymmetric polynomials and prove some concavity results for those polynomials. We express the following conjecture: if this is true, we are able to solve the prescription equation in many cases. ∀ P;Q ∈ ℝ[X], avec deg P = deg Q = p, P and Q are real-rooted => p ∑ k=0 P(k) Q(p-k) is real-rooted:

Page generated in 0.1328 seconds