Spelling suggestions: "subject:"contaminants face"" "subject:"contaminants fase""
1 |
A Groundwater Flow and Contaminant Transport Model for the Newport Wellfield Aquifer, Newport, OhioAntonacci, Thomas Edward 20 July 2012 (has links)
No description available.
|
2 |
Redox behavior of magnetite in the environment: moving towards a semiconductor modelGorski, Christopher Aaron 01 December 2009 (has links)
Magnetite (Fe3O4) is a commonly found in the environment and can form via several pathways, including biotic and abiotic reduction of Fe3+ oxides and the oxidation of Fe2+ and Fe0. Despite extensive research, the redox behavior of magnetite is poorly understood. In previous work, the extent and kinetics of contaminant reduction by magnetite varied by several orders of magnitude between studies, two fundamentally different models are used to explain magnetite oxidation (i.e., core-shell diffusion and redox-driven), and reported reduction potentials vary by almost 1 V. In other fields of science (e.g., physics), magnetite stoichiometry (x = Fe2+/Fe3+) is a commonly measured property, however, in environmental studies, the stoichiometry is rarely measured.
The stoichiometry of magnetite can range from 0.5 (stoichiometric) to 0 (completely oxidized), with intermediate values (0 < x < 0.5) referred to as nonstoichiometric or partially oxidized magnetite. To determine the relationship between magnetite stoichiometry and contaminant fate, the reduction rates of three substituted nitrobenzenes (ArNO2) were measured. The kinetic rates varied over five orders of magnitude as the particle stoichiometry increased from x = 0.31 to 0.50. Apparent 15N kinetic isotope effects (15N-AKIE) values for ArNO2 were greater than unity for all magnetite stoichiometries investigated, and indicated that mass transfer processes are not controlling the reaction rate. To determine if the reaction kinetics were redox-driven, magnetite open circuit potentials (EOCP) were measured. EOCP values were linearly related to the stoichiometry, with more stoichiometric magnetite having a lower potential, in good agreement with redox-driven models.
The reaction of aqueous Fe2+ and magnetite was investigated. Similar to previous findings for other Fe3+ oxides, the formation of a stable sorbed Fe2+ species was not observed; instead, the sorbed Fe2+ underwent interfacial electron transfer to form a partially oxidized magnetite phase, which was accompanied by reduction of the underlying magnetite. The lack of a stable sorbed Fe2+ species on magnetite indicated that the traditional surface complexation model was incorrect; instead, the uptake of Fe2+ by magnetite appeared to be limited by the whole particle (i.e., the sorbed and underlying phases combined) reaching a stoichiometry of 0.5.
|
3 |
Using Contaminant Photoreactivity as a Holistic Indicator to Monitor Changes in Wetland Water CharacteristicsLanglois, Maureen Connell 21 October 2011 (has links)
No description available.
|
4 |
Laboratory and field investigation of chlorinated solvents remediation in soil and groundwaterSantharam, Sathishkumar January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Larry E. Erickson / Chlorinated solvents are the second most ubiquitous contaminants, next to petroleum hydrocarbons, and many are carcinogens. Tetrachloroethylene or perchloroethene (PCE) has been employed extensively in the dry cleaning industry and carbon tetrachloride (CT) has been used as a fumigant in grain storage facilities. In this work, remediation feasibility studies were conducted by mesocosm experiments; a chamber was divided into six channels and filled with soil, and plants were grown on top. Each channel was fed with contaminated water near the bottom and collected at the outlet, simulating groundwater flow conditions. The contaminants were introduced starting from March 12, 2004. PCE was introduced at a concentration of about 2 mg/L ([similar to]12 [Mu]moles/L) in three channels, two of them with alfalfa plants and the other with grass. CT was introduced at a concentration of about 2 mg/L ([similar to]13 [Mu]moles/L) in the other three channels, two of them with alfalfa plants and the other with grass. After the system had attained steady state, the concentrations of PCE and CT at inlet and outlet were monitored and the amount of PCE and CT disappearing in the saturated zone was studied. Since no degradation products were found at the outlet after about 100 days, one channel-each for PCE and CT (with alfalfa) was made anaerobic by adding one liter of 0.2 % glucose solution. The glucose solution was fed once every month starting from July 1, 2004 and continued until February 2005. From October 1, 2004, one liter of 0.1 % emulsified soy oil methyl esters (SOME) was fed to two other channels (with alfalfa), one exposed to PCE and another exposed to CT. The SOME addition dates were the same as that for glucose. The outlet liquid of the channel fed with PCE and SOME started to contain some of the degradation compounds of PCE; however, the extent of degradation was not as great as that of the glucose fed channel. No degradation compounds were observed in the outlet solution of the channel (grass grown on top) in which no carbon and energy supplements were added. Similar trend was observed in the CT fed channels also. KB-1, a commercially available microbial culture (a consortium of dehalococcoides) that degrades dichloroethene (DCE), was added through the inlet of the PCE fed channels, but this did not lead to sufficient conversion of DCE. Addition of KB-1 at well 3, located approximately in the middle of the channel, had a greater impact in the degradation of DCE, in both glucose and SOME amended channels, compared to addition at the inlet. KB-1 culture added to the channel was active even 155 days later, suggesting that there is sustainable growth of KB-1 when provided with suitable conditions and substrates.
A pilot field study was conducted for remediation of a tetrachloroethylene (PCE) contaminated site at Manhattan, KS. The aquifer in the pilot study area has two distinct zones, termed shallow zone and deep zone, with groundwater velocities of about 0.3 m/day and 0.1 m/day. Prior to the pilot study, PCE concentration in groundwater at the pilot study area was about 15 mg/L (ppm) in the deep zone and 1 mg/L in the shallow zone. Nutrient solution comprising soy oil methyl esters (SOME), lactate, yeast extract and glucose was added in the pilot study area for biostimulation, on August 18, 2005. Potassium bromide (KBr) was added to the nutrient solution as a tracer. PCE was converted to DCE under these conditions. To carry out complete degradation of PCE, KB-1, a consortium of Dehalococcoides, and a second dose of nutrient solution were added on October 13, 2005. After addition of KB-1, both PCE and DCE concentrations decreased. Nutrients were again injected on March 3, 2006 (with KBr) and on August 1, 2006. The total chlorinated ethenes (CEs) have decreased by about 80 % in the pilot study area due to bioremediation. Biodegradation of CEs continued for a long time (several months) after the addition of nutrients. The insoluble SOME may be retained at the feeding area and provide a long time source of electron donors. Biostimulation and bioaugmentation of PCE contaminated soil and groundwater was evaluated in the laboratory and this technique was implemented successfully in the pilot field study.
Modeling of the tracer study was performed using an advection-dispersion equation (ADE) and traditional residence time distribution (RTD) methods. The dispersion coefficient, groundwater velocity and hydraulic conductivity were estimated from the experimental data. The groundwater velocities vary from 1.5 cm/d to 10 cm/d in the deep zone and 15 cm/d to 40 cm/d in the shallow zone. The velocities estimated from the 2004 tracer study and 2005 tracer study were higher compared to the velocity estimated from the 2006 tracer study, most likely because of microbial growth and product formation that reduced the hydraulic conductivity. Based on data collected from several wells the hydrologic parameter values obtained from tracer studies appear to vary spatially.
|
5 |
Contaminant fate and transport analysis in soil-plant systemsGoktas, Recep Kaya 20 January 2011 (has links)
The main objective of this study is to develop a modeling methodology that facilitates incorporating the plant pathway into environmental contamination models recognizing the fact that plants are dynamic entities that regulate their life cycle according to natural and anthropogenic environmental conditions.
A modeling framework that incorporates the plant pathway into an integrated water flow and contaminant transport model in terrestrial systems is developed. The modeling framework is aimed to provide a tool to analyze the plant pathway of exposure to contaminants. The model developed using this framework describes the temporal and spatial variation of the contaminant concentration within the plant as it is interacting with the soil and the atmosphere.
The first part of the study focuses on the integration of the dynamics of water and contaminant distribution and plant related processes within the vadose zone. A soil-plant system model is developed by coupling soil-water flow, contaminant transport, plant life-cycle, and plant pathway models. The outcome unifies single media continuous models with multimedia compartmental models in a flexible framework. The coupling of the models was established at multiple interfaces and at different levels of solution steps (i.e. model development phase vs. numerical solution phase).
In the second part of the study, the soil-plant system model is extended to cover large spatial areas by describing the environmental system as a collection of soil-plant systems connected through overland flow and transport processes on the ground surface and through lateral interactions in the subsurface. An overland flow model is integrated with the previously coupled model of unsaturated zone soil-water flow and plant life-cycle by solving the flow model equations simultaneously within a single global matrix structure. An overland / subsurface interaction algorithm is developed to handle the ground surface conditions. The simultaneous solution, single-matrix approach is also adopted when integrating the overland transport model with the previously coupled models of vadose zone transport and plant pathway.
The model developed is applied to various environmental contamination scenarios where the effect of the presence of plants on the contaminant migration within environmental systems is investigated.
|
Page generated in 0.1078 seconds