• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 193
  • 94
  • 57
  • 26
  • 10
  • 9
  • 8
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 494
  • 119
  • 111
  • 89
  • 84
  • 68
  • 51
  • 37
  • 35
  • 30
  • 30
  • 29
  • 29
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Comparison of Two Advanced Oxidation Processes for Their Production of Hydroxyl Radicals and Evaluation of a UV/Ozone AOP at Varying UV Fluence for Treating Diclofenac

Cass, Alexandra 01 August 2021 (has links) (PDF)
This study explores the efficacy of two advanced oxidation processes for generation of hydroxyl radicals to promote degradation of emerging contaminants. Drought and water shortage have become pressing issues caused by our world’s changing climate. Water reclamation and reuse are increasingly important options for relieving this water stress. Water reuse runs the risk of reintroducing recalcitrant compounds that can accumulate in our bodies and environment. Advanced treatment methods that degrade these compounds are vital to protect our health and the health of the environment while providing necessary water resources. Advanced oxidation processes (AOPs) have shown great promise for removing recalcitrant compounds through the production of highly reactive hydroxyl radicals (·OH). This study investigated two AOPs for their production of ·OH as indicated by the probe compound pCBA. One of the AOPs examined was a proprietary device that utilizes ambient air and UV to generate singlet oxygen, which subsequently produces ·OH in water. The other is a more common method that combines UV and ozone (O3) to produce ·OH. The proprietary method was not found to produce notable hydroxyl radicals compared to the UV/O3 AOP. The UV dose of the UV/O3 AOP was also altered to analyze the impact on hydroxyl radical production and removal of a representative emerging contaminant, diclofenac (DCF). The sleeves made to alter the UV dose were not found to change the UV dose enough to show a consequential difference in degradation for the fluence indicator atrazine (ATZ) or the emerging contaminant DCF. Further testing with thicker sleeves would be important to determine the necessary amounts of UV and reasonably scale this technology for a water treatment facility.
272

Impact of Soil Properties on Removal of Emerging Contaminants from Wastewater Effluent During Soil Aquifer Treatment

Riley, Lauren N 01 December 2020 (has links) (PDF)
This study evaluates soil properties that impact the effectiveness of soil aquifer treatment (SAT) as a polishing step to the remove two classes of ECs from wastewater effluent: pharmaceuticals and personal care products (PPCPs), and engineering nanomaterials (ENMs). In recent years, it has been determined that elevated levels of emerging contaminants (ECs) are being released into the environment with wastewater effluent. ECs are proven to cause adverse environmental and health effects as a result of long-term exposure. It is important to evaluate sustainable solutions to improve the current methods of wastewater treatment to address these ECs. Soil aquifer treatment (SAT) is a sustainable, cost effect treatment alternative to advanced treatment at a wastewater treatment plant. SAT replenishes local groundwater supplies while allowing for indirect potable reuse, if contaminants of concern such as ECs can be effectively removed from the water. Since wastewater effluent can contain a variety of contaminants with myriad physical and chemical properties, understanding the potential of the aquifer itself to provide EC removal is a key step in establishing SAT as a viable treatment alternative. Peer-reviewed research studies were analyzed to determine the soil properties that affect the fate and transport of ECs in the aquifer environment. The data was complied to produce recommendations for an effective SAT site. Physical and chemical properties of the soil facilitate contaminant removal as the groundwater flows through the aquifer. This study determined that removal of ECs from effluent had a correlation with (1) high clay content, (2) small Darcy Velocity, (3) high soil organic matter content, and (4) low sand content. Based on the 6 peer-reviewed research studies reviewed, the removal of nanomaterials is affected by clay content and sand content, but not soil organic matter content. Conversely, the removal of PPCPs is affected by clay content and soil organic mater content, but not sand content. It can be concluded that two different removal mechanisms facilitate the removal of nanomaterials versus PPCPs; physical removal for nanomaterials and chemical removal (sorption) for PPCPs. Clay facilitates the removal of both contaminants. The small soil diameter of clay forms smaller pores in the soil media. This causes increased pore straining, while also restricting the flow through the soil, which increases the contact time between the soil particle and the ECs. Additionally, clay has a large surface area, which increases surface interactions, such as sorption, of the EC to the surface of the clay particle.
273

Studies to Characterize Heavy Metal Content and Migration from Recycled PolyethyleneTerephthalate

Whitt, Michael John-Ross 01 December 2014 (has links) (PDF)
Packaging Materials account for 31% of the world’s municipal solid waste. Agencies like the Environmental Protection Agency (EPA) and the Agency for Toxic Substances and Disease Registry (ATSDR) are pushing for the increased use of recycled thermoplastic materials. Polyethylene terephthalate (PET) is a commonly recycled thermoplastic which is used to package ready-to-eat fruits and vegetables. Most recycled polyethylene terephthalate (RPET) packaging materials contain heavy metal catalysts, the most common being antimony. The recent increased use of recycled plastic materials has been suspected as the source of increased human heavy metal exposure. In this study, cadmium, chromium, nickel, lead and antimony were quantified in post-consumer RPET rigid containers and films using inductively coupled plasma-atomic emission spectrometry (ICP-AES). Two hundred samples were tested of which 29 were found to be contaminated with heavy metals in the parts-per-million (ppm) range. Chromium was found in all the contaminated sample replicates at an average level of 8.18 ppm. Cadmium was found in all the contaminated samples as well. Lead was found in 90.4% of the contaminated samples and concentrations ranged from a low of 0.02 ppm to a high of 0.36 ppm. Nickel was found in 96.4% of the contaminated samples while antimony was found in 97.6% of the samples. Due to limited sample material, 22 of the 29 contaminated RPET rigid containers and films were tested for heavy metal migration into a 5% citric acid:water solution (w/v) or deionized water. Samples were subjected to prolonged storage at 7.2 or 22.2°C for 1, 7 or 14 days, or were exposed for 5 minutes to microwaves from a 1700-watt microwave oven set to 70% power before analysis. Leachate values were at ppb levels but were often below the ICP-AES Limits of Detection which were at also the ppb level, whether calculated for deionized water or 5% citric acid in water. No measureable levels of heavy metal were detected for any sample exposed to water, regardless of treatment. For samples exposed to 5% citrate and stored or microwaved, only chromium and nickel leached at measurable levels, and the number of RPET’s releasing measurable chromium and nickel increased with microwaving compared to the same plastics stored at 22.2 or 7.2°C. Since leaching was calculated as µg/L of heavy metal lost from the entire inner surface (1021 cm2) of a retail salad bag, actual exposure to heavy metal would be much less than measured in this study as retail fruit and vegetable packages and microwaveable pouches usually contain very little liquid in order to increase food safety. The results therefore suggest the potential for little migration of heavy metal from recycled PET to whole or fresh-cut fruits and vegetables when held at ambient or refrigerated temperatures, or when microwaved.
274

Optimization and Longevity of Functionalized Multi-Walled Carbon Nanotube-Enabled Membranes for Water Treatment

White, Madeleine Michael Isabella 01 June 2020 (has links) (PDF)
Water scarcity is a growing concern at the global scale. Large scale water reuse is growing both in necessity and popularity. Before water reuse can be performed efficiently on a large scale or be used for potable supply, even indirectly, contaminants of emerging concern (CECs) will need to be treated at the full scale. Advanced oxidation processes (AOPs) are a form of advanced water treatment capable of treating a wide range of CECs. This study contributes to the growing field of AOPs and more specifically AOPs using ozone combined with functionalized multi-walled carbon nanotubes (MWCNTs). Ozonation of MWCNTs has been found to increase hydroxyl radical production and improve AOP treatment. Novel MWCNT-enabled membranes were used as catalysts for ozonation to degrade the CEC Atrazine. Atrazine is an ozone recalcitrant CEC that is commonly found in herbicides. Atrazine removal results, found using a high-performance liquid chromatograph (HPLC), were inconsistent between membranes constructed using identical procedures. Further analysis using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopes (SEM), and UV-Vis spectrophotometry was conducted to explore inconsistencies in construction of the membranes which might explain removal inconsistencies and predict membrane longevity. Removal was found to be influenced by filtration time and ozone exposure. Ozone exposure and filtration time influence percent removal because they both affect hydroxyl formation. The membrane test filtration duration, for equal filtered volumes, ranged from under 5 minutes to nearly an hour. It is believed that filtration time inconsistency was due to inconsistent MWCNT loading on the surface of the membranes. Extended exposure to ozone might change the surface chemistry of the MWCNTs on the membrane surface, affecting hydroxyl radical production. Additionally, repeated use of the membrane created surface defects that might reduce the membrane strength. This study found that the lifetime of the membrane is far past what was simulated in lab and further testing must be performed.
275

Contaminants and decomposition products in naturally aged pentaerythritol tetranitrate (PETN)

Brackett, Claudia L. 01 January 2005 (has links) (PDF)
PETN is characterized by its sensitivity to environmental conditions. However, anhydrous low-temperature decomposition is poorly understood. This research undertook the search for the decomposition products of naturally aged PETN. This study did not detect any decomposition products. The methods tried were NMR, HPLC, mass spectrometry, and HPLC. PETN's behavior was sensitive to mass spectral conditions and resulted in adduct formation and artifactual decomposition. Artifacts could be sources of misinterpretation for true decomposition. Such behaviors included PETN's autonitration and nitrate's clinging to instrument surfaces. Additionally, PETN seemed able to autooxidize which produced an [M] − ion and [M+H] − ion that obscured isotopic information. Conditions that enhanced the abundance of the [M−H] − ion also increased PETN artifactual decomposition. Because an ion at m/z 330 could represent PETRIN, it was studied and candidated to be an artifact. This PETRIN-acetate isobar was formed from PETN in the presence of acetate. An illusion that a new mass at m/z 330 materialized could be due to spray chamber temperatures. The ion stayed relatively constant throughout a temperature increase while the abundance for other PETN ions decreased. This created an illusion of increasing abundance when the mass spectrum was displayed in normalized mode. An HPLC gradient of acetonitrile/water with addition of 3% NH 4 OH and 0.1 M ammonium acetate in methanol produced chromatographic peaks. However, these species were artifacts formed in the presence of hydroxide ion. Hydroxide accelerated the disappearance of the ion at m/z 315, but not the ion at m/z 378. A second HPLC system used an acetonitrile/water gradient with added 3.3 M ammonium acetate in methanol. However, no difference between PETN and naturally aged PETN chromatograms was evident. In an additional experiment, with the HPLC effluent collected in aliquots and analyzed separately, no condensed phase decomposition product was observed. Because the NMR, HPLC and mass spectrometry experiments did not detect condensed phase decomposition products, the decomposition products might be gas(es). In support, the explosives HMX and RDX are known to decompose in gas phase reactions. It is reasonable that naturally aged PETN proceeds through the same mechanism. The findings of this dissertation supported this viewpoint.
276

Reductive treatment of drinking water contaminants and disinfection by-products using aqueous phase corona discharge.

Lakhian, Vickram 06 1900 (has links)
With increasing global population comes an increase in the need to safe and clean drinking water. Contaminants can arise in drinking water either naturally, or by the interaction of disinfection chemicals with naturally occurring materials, or simply due to by-products of the disinfection mechanism itself. Due to the oxidative nature of our disinfection treatments, these species are in highly oxidized states, and in some cases require chemical reduction to become less harmful. The present work demonstrates the capabilities of aqueous phase corona plasma in reductive treatment of oxidized contaminants found in drinking water. This study focuses on the treatment of the nitrate ion, bromate ion, chlorate ion and monobromoacetic acid, all of which can be found in typical drinking water systems. The second and third chapters within this thesis establish the optimal water matrix conditions for the treatment of bromate, chlorate and nitrate. These experiments investigate the influence of pH, temperature, presence and types of oxidative scavengers, dissolved gases and by-products that are made by this treatment process with these compounds. The main conclusion of these works is that aqueous phase corona discharge is capable of producing chemical compounds with sufficient energy to chemically reduce the nitrate, bromate and chlorate anions. Acidic conditions, under low dissolved oxygen scenarios facilitated the highest amount of reduction of the target contaminants, as well as having the presence of oxidative species scavengers. It was also observed that the anoxic environment could be obtained by introducing alcohols into the contaminated solution which generated sufficient cavitation and bubbling to strip the oxygen from solution. Through a comparison of various carbonaceous compounds as oxidative species scavengers, it was determined that the volatile alcohols provided a better performance than other soluble carbon sources, due to the decrease in dissolved oxygen. The fourth chapter considers different methods of introducing argon, oxygen and nitrogen into the test solution for the effect they would have on the treatment of solutions containing the bromate anion or monobromoacetic acid. The optimal pH for the treatment of monobromoacetic acid was also established, where again the acidic conditions prevailed. Tests were conducted to consider the effect of having the solution pre-saturated with the test gas, continually sparged, or with the gas passing through a hollow discharge electrode. The tests in which gas was blown through the discharge electrode greatly surpassed all other treatment regimes, where nitrogen provided the best removal for both contaminants under acidic conditions for bromate and under acidic and basic conditions for monobromoacetic acid. The fifth chapter provides conclusions for the overall thesis and recommendations for future work. / Thesis / Doctor of Philosophy (PhD)
277

Transportation of Trace Metals and Major Elements in the Ottawa River, Northwest Ohio

Bissell, Corrina 18 July 2012 (has links)
No description available.
278

An Internship in Conservation Biology with the U.S. Fish and Wildlife Service

Wolf, Morgan Kay 11 December 2009 (has links)
No description available.
279

Monitoring and Removal of Water Contaminants of Emerging Concern: Development of A Multi-Walled Carbon Nanotube Based-Biosensor and Highly Tailor-Designed Titanium Dioxide Photocatalysts

Han, Changseok 27 October 2014 (has links)
No description available.
280

ENGINEERED PROCESS FOR THE PHOTOCATALYTIC TREATMENT OF ORGANIC CONTAMINANTS IN WATER

DIONYSIOU, DIONYSIOS D. 11 October 2001 (has links)
No description available.

Page generated in 0.0502 seconds